27 research outputs found

    Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    Get PDF
    Purpose: To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods: Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results: A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions: Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for treating retinal degenerations merits further investigation

    y-secretase inhibition of murine choroidal neovascularization is associated with reduction of superoxide and proinflammatory cytokines

    No full text
    PURPOSE. This study aimed to determine whether upregulation of Îł-secretase could inhibit laser-induced choroidal neovascularization (CNV) and if this was associated with a reduction in both oxidative stress and proinflammatory cytokines. METHODS. Îł-Secretase, or its catalytic subunit presenilin 1 (PS1), were upregulated by exposure to either pigment epithelial derived factor (PEDF) or an AAV2 vector containing a PS1 gene driven by a vascular endothelial-cadherin promoter. Retinal endothelial cells were infected with AAV2 or exposed to PEDF in the presence or absence of VEGF and in vitro angiogenesis determined. Mouse eyes either received intravitreal injection of PEDF, DAPT (a Îł-secretase inhibitor) or PEDF + DAPT at the time of laser injury, or AAV2 infection 3 weeks before receiving laser burns. Lesion volume was determined 14 days post laser injury. Superoxide generation, antioxidant activity and the production of proinflammatory mediators were assessed. Knockdown of Îł-secretase was achieved using siRNA. RESULTS. Îł-Secretase upregulation and PS1 overexpression suppressed VEGF-induced in vitro angiogenesis and in vivo laser-induced CNV. This was associated with a reduction in the expression of VEGF and angiogenin 1 together with reduced superoxide anion generation and an increase in MnSOD compared with untreated CNV eyes. PS1 overexpression reduced proinflammatory factors and microglial activation in eyes with CNV compared with control. siRNA inhibition of Îł-secretase resulted in increased angiogenesis. CONCLUSIONS. Îł-Secretase, and in particular PS1 alone, are potent regulators of angiogenesis and this is due in part to stabilizing endogenous superoxide generation and reducing proinflammatory cytokine expression during CNV

    A one-day time course of flibanserin can preserve retinal morphology and function.

    No full text
    <p><b>(A i)</b> A spider graph representing average right-eye receptor plus values demonstrates that a single dose of 6 mg/kg flibanserin or greater can significantly preserve retinal morphology to thicknesses comparable to naïve mice. The gray area indicates ± 2 SD of the naïve averaged data. (<b>A ii, iii</b>) Receptor plus thicknesses, with each dot representing average right and left eye thickness from one mouse, demonstrate that 6 mg/kg flibanserin provides morphological protection in the <b>(A ii)</b> temporal quadrant and the <b>(A iii)</b> nasal quadrant. Group averages are represented as mean ± standard error bar. <b>(B)</b> Mice treated with doses of 6 mg/kg and greater of flibanserin showed significantly higher ERG b-wave and a-wave responses at the highest flash intensity (3.55 log cd•s/m<sup>2</sup>) as compared to vehicle-treated mice. “†” indicates the greatest flash intensity that elicits a rod-only response (b<sub>(max,rod)</sub>). Group differences at the “†” flash intensity were statistically evaluated and are represented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0159776#pone.0159776.s001" target="_blank">S1B Fig</a>. Individual ERGs were averaged with ERGs for mice within group and are represented as mean ± standard error. * indicates a significant difference from both the vehicle-treated group and the naïve group, <i>P</i> < 0.05. n.s. indicates non-significance with <i>P</i> > 0.05.</p

    A 5-day time course of flibanserin preserves retinal function in a dose-dependent manner, as measured by ERG.

    No full text
    <p>(<b>A</b>) Representative ERG traces at the 3.55 log cd•s/m<sup>2</sup> light intensity demonstrating dose-dependent improvements in ERG responses as compared to vehicle-injected mice. (<b>B</b>) Mice treated with doses of 3 mg/kg or greater of flibanserin showed significantly higher ERG b-wave and a-wave responses at the highest ERG flash intensity (3.55 log cds/m<sup>2</sup>) as compared to vehicle-treated mice. Individual ERGs were averaged with ERGs for mice within its respective group and are represented as mean ± standard error. * indicates a significant difference from both the vehicle-treated group and the naïve group, <i>P</i> < 0.05. n.s. indicates non-significance with <i>P</i> > 0.05. The responses at the ERG b<sub>(max,rod)</sub> light intensity, indicated by the “†”, were statistically evaluated and are represented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0159776#pone.0159776.s001" target="_blank">S1A Fig</a>.</p
    corecore