7 research outputs found
Transcriptomic profiles of multiple organ dysfunction syndrome phenotypes in pediatric critical influenza
BackgroundInfluenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection.MethodsWe measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR q<0.05).ResultsComparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week.ConclusionThus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome
Fluid balance in critically ill children with acute lung injury
OBJECTIVES: In the Fluid and Catheter Treatment Trial (NCT00281268), adults with acute lung injury randomized to a conservative vs. liberal fluid management protocol had increased days alive and free of mechanical ventilator support (ventilator-free days). Recruiting sufficient children with acute lung injury into a pediatric trial is challenging. A Bayesian statistical approach relies on the adult trial for the a priori effect estimate, requiring fewer patients. Preparing for a Bayesian pediatric trial mirroring the Fluid and Catheter Treatment Trial, we aimed to: 1) identify an inverse association between fluid balance and ventilator-free days; and 2) determine if fluid balance over time is more similar to adults in the Fluid and Catheter Treatment Trial liberal or conservative arms.
DESIGN: Multicentered retrospective cohort study.
SETTING: Five pediatric intensive care units.
PATIENTS: Mechanically ventilated children (age\u3e/=1 month toyrs) with acute lung injury admitted in 2007-2010.
INTERVENTIONS: None.
MEASUREMENTS AND MAIN RESULTS: Fluid intake, output, and net fluid balance were collected on days 1-7 in 168 children with acute lung injury (median age 3 yrs, median PaO2/FIO2 138) and weight-adjusted (mL/kg). Using multivariable linear regression to adjust for age, gender, race, admission day illness severity, PaO2/FIO2, and vasopressor use, increasing cumulative fluid balance (mL/kg) on day 3 was associated with fewer ventilator-free days (p=.02). Adjusted for weight, daily fluid balance on days 1-3 and cumulative fluid balance on days 1-7 were higher in these children compared to adults in the Fluid and Catheter Treatment Trial conservative arm (p\u3c.001, each day) and was similar to adults in the liberal arm.
CONCLUSIONS: Increasing fluid balance on day 3 in children with acute lung injury at these centers is independently associated with fewer ventilator-free days. Our findings and the similarity of fluid balance patterns in our cohort to adults in the Fluid and Catheter Treatment Trial liberal arm demonstrate the need to determine whether a conservative fluid management strategy improves clinical outcomes in children with acute lung injury and support a Bayesian trial mirroring the Fluid and Catheter Treatment Trial
DataSheet_1_Transcriptomic profiles of multiple organ dysfunction syndrome phenotypes in pediatric critical influenza.pdf
BackgroundInfluenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection.MethodsWe measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR qResultsComparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week.ConclusionThus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome.</p
DataSheet_2_Transcriptomic profiles of multiple organ dysfunction syndrome phenotypes in pediatric critical influenza.xlsx
BackgroundInfluenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection.MethodsWe measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR qResultsComparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week.ConclusionThus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome.</p
Cytokine Profiles of Severe Influenza Virus-Related Complications in Children
RationaleEffective immunomodulatory therapies for children with life-threatening “cytokine storm” triggered by acute influenza infection are lacking. Understanding the immune profiles of children progressing to severe lung injury and/or septic shock could provide insight into pathogenesis.ObjectivesTo compare the endotracheal and serum cytokine profiles of children with influenza-related critical illness and to identify their associations with severe influenza-associated complications.MethodsChildren with influenza-related critical illness were enrolled across 32 hospitals in development (N = 171) and validation (N = 73) cohorts (December 2008 through May 2016). Concentrations of 42 cytokines were measured in serum and endotracheal samples and clustered into modules of covarying cytokines. Relative concentrations of cytokines and cytokine modules were tested for associations with acute lung injury (ALI), shock requiring vasopressors, and death/ECMO.Measurements and main resultsModules of covarying cytokines were more significantly associated with disease severity than individual cytokines. In the development cohort, increased levels of a serum module containing IL6, IL8, IL10, IP10, GCSF, MCP1, and MIP1α [shock odds ratio (OR) = 3.37, family-wise error rate (FWER) p < 10−4], and decreased levels of a module containing EGF, FGF2, SCD40L, and PAI-1 (shock OR = 0.43, FWER p = 0.002), were both associated with ALI, shock, and death-ECMO independent of age and bacterial coinfection. Both of these associations were confirmed in the validation cohort. Endotracheal and serum cytokine associations differed markedly and were differentially associated with clinical outcomes.ConclusionWe identified strong positive and negative associations of cytokine modules with the most severe influenza-related complications in children, providing new insights into the pathogenesis of influenza-related critical illness in children. Effective therapies may need to target mediators of both inflammation and repair
Recommended from our members
Factors influencing plasma transfusion practices in paediatric intensive care units around the world
Background and Objectives
Plasma transfusions are a frequent treatment worldwide, but many studies have reported a wide variation in the indications to transfuse. Recently, an international paediatric study also showed wide variation in frequency in the use of plasma transfusions: 25% of the centres transfused plasma to >5% of their patients, whereas another 25% transfused plasma to <1% of their patients. The objective of this study was to explore the factors associated with different plasma transfusion practices in these centres.
Materials and Methods
Online survey sent to the local investigators of the 101 participating centres, in February 2016. Four areas were explored: beliefs regarding plasma transfusion, patients’ case‐mix in each unit, unit's characteristics, and local blood product transfusion policies and processes.
Results
The response rate was 82% (83/101). 43% of the respondents believed that plasma transfusions can arrest bleeding, whereas 27% believe that plasma transfusion can prevent bleeding. Centres with the highest plasma transfusion rate were more likely to think that hypovolaemia and mildly abnormal coagulation tests are appropriate indications for plasma transfusions (P = 0·02 and P = 0·04, respectively). Case‐mix, centre characteristics or local transfusion services were not identified as significant relevant factors.
Conclusion
Factors influencing plasma transfusion practices reflect beliefs about indications and the efficacy of transfusion in the prevention and management of bleeding as well as effects on coagulation tests. Educational and other initiatives to target these beliefs should be the focus of research