31 research outputs found
Translocation of introduced reindeer from Hagemeister Island, Alaska
In 1992 and 1993, 411 live reindeer were shipped by air from Hagemeister Island to the Anchorage area, Alaska. Reindeer were either rounded up by helicopter and then corralled or captured by net-gun fired from a helicopter. Outcome of both capture events showed that helicopter corralling of reindeer was more successful than catching them with a net-gun and that post-rut rounding up was more successful than rounding up during the rut itself
Translocation of introduced reindeer from Hagemeister Island, Alaska
In 1992 and 1993, 411 live reindeer were shipped by air from Hagemeister Island to the Anchorage area, Alaska. Reindeer were either rounded up by helicopter and then corralled or captured by net-gun fired from a helicopter. Outcome of both capture events showed that helicopter corralling of reindeer was more successful than catching them with a net-gun and that post-rut rounding up was more successful than rounding up during the rut itself
Recommended from our members
Effects of Secondary Metabolites from Balsam Poplar and Paper Birch on Cellulose Digestion
Inhibitory effects of metabolites from balsam poplar (Populus balsamifera) and Alaskan paper birch (Betula papyrifera) on cellulose digestion in vitro were examined. Significant inhibition of cellulose digestion occurred at concentrations of 5 mg per gram of substrate for benzyl alcohol, cineole, papyriferic acid, and a steam distillate fraction from juvenile paper birch. Digestibility declined as increasing amounts of resin were added to the substrate, but the rate of inhibition declined with each concentration increment. Secondary metabolites present in resins of paper birch and balsam poplar appear to be important in determining the relative nutritive quality of these species.This material was digitized as part of a cooperative project between the Society for Range Management and the University of Arizona Libraries.The Journal of Range Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform August 202
Climate warming is associated with smaller body size and shorter lifespans in moose near their southern range limit
Despite the importance of body size for individual fitness, population dynamics and community dynamics, the influence of climate change on growth and body size is inadequately understood, particularly for long‐lived vertebrates. Although temporal trends in body size have been documented, it remains unclear whether these changes represent the adverse impact of climate change (environmental stress constraining phenotypes) or its mitigation (via phenotypic plasticity or evolution). Concerns have also been raised about whether climate change is indeed the causal agent of these phenotypic shifts, given the length of time‐series analysed and that studies often do not evaluate – and thereby sufficiently rule out – other potential causes. Here, we evaluate evidence for climate‐related changes in adult body size (indexed by skull size) over a 4–decade period for a population of moose (Alces alces) near the southern limit of their range whilst also considering changes in density, predation, and human activities. In particular, we document: (i) a trend of increasing winter temperatures and concurrent decline in skull size (decline of 19% for males and 13% for females) and (ii) evidence of a negative relationship between skull size and winter temperatures during the first year of life. These patterns could be plausibly interpreted as an adaptive phenotypic response to climate warming given that latitudinal/temperature clines are often accepted as evidence of adaptation to local climate. However, we also observed: (iii) that moose with smaller skulls had shorter lifespans, (iv) a reduction in lifespan over the 4‐decade study period, and (v) a negative relationship between lifespan and winter temperatures during the first year of life. Those observations indicate that this phenotypic change is not an adaptive response to climate change. However, this decline in lifespan was not accompanied by an obvious change in population dynamics, suggesting that climate change may affect population dynamics and life‐histories differently
Negative frequency‐dependent foraging behaviour in a generalist herbivore (Alces alces) and its stabilizing influence on food web dynamics
Resource selection is widely appreciated to be context‐dependent and shaped by both biological and abiotic factors. However, few studies have empirically assessed the extent to which selective foraging behaviour is dynamic and varies in response to environmental conditions for free‐ranging animal populations. Here, we assessed the extent that forage selection fluctuated in response to different environmental conditions for a free‐ranging herbivore, moose (Alces alces), in Isle Royale National Park, over a 10‐year period. More precisely, we assessed how moose selection for coniferous versus deciduous forage in winter varied between geographic regions and in relation to (a) the relative frequency of forage types in the environment (e.g. frequency‐dependent foraging behaviour), (b) moose abundance, (c) predation rate (by grey wolves) and (d) snow depth. These factors are potentially important for their influence on the energetics of foraging. We also built a series of food‐chain models to assess the influence of dynamic foraging strategies on the stability of food webs. Our analysis indicates that moose exhibited negative frequency dependence, by selectively exploiting rare resources. Frequency‐dependent foraging was further mediated by density‐dependent processes, which are likely to be predation, moose abundance or some combination of both. In particular, frequency dependence was weaker in years when predation risk was high (i.e. when the ratio of moose to wolves was relatively low). Selection for conifers was also slightly weaker during deep snow years. The food‐chain analysis indicates that the type of frequency‐dependent foraging strategy exhibited by herbivores had important consequences for the stability of ecological communities. In particular, the dynamic foraging strategy that we observed in the empirical analysis (i.e. negative frequency dependence being mediated by density‐dependent processes) was associated with more stable food web dynamics compared to fixed foraging strategies. The results of this study indicated that forage selection is a complex ecological process, varying in response to both biological (predation and moose density) and abiotic factors (snow depth) and over relatively small spatial scales (between regions). This study also provides a useful framework for assessing the influence of other aspects of foraging behaviour on the stability of food web dynamics