22 research outputs found

    Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia–reperfusion-induced endothelial cell apoptosis

    Get PDF
    Activation of cytoskeleton regulator Rho-kinase during ischemia–reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R2 = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity

    NOX2, p22phox and p47phox are targeted to the nuclear pore complex in ischemic cardiomyocytes colocalizing with local reactive oxygen species.

    Get PDF
    BACKGROUND: NADPH oxidases play an essential role in reactive oxygen species (ROS)-based signaling in the heart. Previously, we have demonstrated that (peri)nuclear expression of the catalytic NADPH oxidase subunit NOX2 in stressed cardiomyocytes, e.g. under ischemia or high concentrations of homocysteine, is an important step in the induction of apoptosis in these cells. Here this ischemia-induced nuclear targeting and activation of NOX2 was specified in cardiomyocytes. METHODS: The effect of ischemia, mimicked by metabolic inhibition, on nuclear localization of NOX2 and the NADPH oxidase subunits p22(phox) and p47(phox), was analyzed in rat neonatal cardiomyoblasts (H9c2 cells) using Western blot, immuno-electron microscopy and digital-imaging microscopy. RESULTS: NOX2 expression significantly increased in nuclear fractions of ischemic H9c2 cells. In addition, in these cells NOX2 was found to colocalize in the nuclear envelope with nuclear pore complexes, p22(phox), p47(phox) and nitrotyrosine residues, a marker for the generation of ROS. Inhibition of NADPH oxidase activity, with apocynin and DPI, significantly reduced (peri)nuclear expression of nitrotyrosine. CONCLUSION: We for the first time show that NOX2, p22(phox) and p47(phox) are targeted to and produce ROS at the nuclear pore complex in ischemic cardiomyocytes

    Argpyrimidine-modified Heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis

    No full text
    Tumors generally display a high glycolytic rate. One consequence of increased glycolysis is the non-enzymatic glycation of proteins leading to the formation of advanced glycation end-products (AGEs). Therefore, we studied the presence of AGEs in non-small cell lung cancer and consequences thereof. We show the presence of two AGEs, i.e. the major AGE N(epsilon)-(carboxymethyl)lysine (CML) and the methylglyoxal-arginine adduct argpyrimidine, in human non-small cell lung cancer tissues by immunohistochemistry. We found in squamous cell carcinoma and adenocarcinoma tissues a strong CML positivity in both tumour cells and tumour-surrounding stroma. In contrast, argpyrimidine positivity was predominantly found in tumor cells and was strong in squamous cell carcinomas, but only weak in adenocarcinomas (2.6+/-0.5 vs. 1.2+/-0.4, respectively; P<0.005). In accordance, argpyrimidine was found in the human lung squamous carcinoma cell line SW1573, while it was almost absent in the adenocarcinoma cell line H460. Heat shock protein 27 (Hsp27) was identified as a major argpyrimidine-modified protein. In agreement with a previously described anti-apoptotic activity of argpyrimidine-modified Hsp27, the percentage of active caspase-3 positive tumor cells in squamous cell carcinomas was significantly lower when compared to adenocarcinomas. In addition, incubation with cisplatin induced almost no caspase-3 activation in SW1573 cells while a strong activation was seen in H460 cells; which was significantly reduced by incubation with an inhibitor of glyoxalase I, the enzyme that catalyzes the conversion of methylglyoxal. These findings suggest that a high level of argpyrimidine-modified Hsp27 is a mechanism of cancer cells for evasion of apoptosis

    ULTRASOUND AND MICROBUBBLE-INDUCED LOCAL DELIVERY OF MICRORNA-BASED THERAPEUTICS

    No full text
    MicroRNAs are involved in many pathologic processes and are a promising target for therapeutic intervention. However, successful, localized delivery of microRNA-based therapeutics is lacking. In this study, cationic ultrasound-responsive microbubbles (MBs) were used to deliver microRNA blockers and mimics in vitro and in vivo. Cationic MBs successfully delivered microRNA blockers to human endothelial cells on ultrasound (US) exposure in vitro. This in vitro US protocol did not successfully deliver microRNA mimics to skeletal muscle of mice, whereas an US protocol that is routinely used for contrast imaging did. Additionally, we used cationic MBs and US to locally deliver antimiR and antagomiR molecules with US causing inertial cavitation. Delivery of antimiR to the extracellular compartments of the muscle was only slightly increased, whereas delivery of antagomiR to the capillaries, myocytes and extracellular space was significantly increased. AntagomiR seems to be a more suitable microRNA blocker than antimiR for use in combination with MBs and US for local delivery. (E-mail: [email protected]) (C) 2015 World Federation for Ultrasound in Medicine & Biology

    Cold Renal Perfusion During Simulation of Juxtarenal Aortic Aneurysm Repair Reduces Systemic Oxidative Stress and Sigmoid Damage in Rats

    No full text
    Objectives: Juxtarenal aortic surgery induces renal ischaemia reperfusion, which contributes to systemic inflammatory tissue injury and remote organ damage. Renal cooling during suprarenal cross clamping has been shown to reduce renal damage. It is hypothesised that renal cooling during suprarenal cross clamping also has systemic effects and could decrease damage to other organs, like the sigmoid colon. Methods: Open juxtarenal aortic aneurysm repair was simulated in 28 male Wistar rats with suprarenal cross clamping for 45 min, followed by 20 min of infrarenal aortic clamping. Four groups were created: sham, no, warm (37 °C saline), and cold (4 °C saline) renal perfusion during suprarenal cross clamping. Primary outcomes were renal damage and sigmoid damage. To assess renal damage, procedure completion serum creatinine rises were measured. Peri-operative microcirculatory flow ratios were determined in the sigmoid using laser Doppler flux. Semi-quantitative immunofluorescence microscopy was used to measure alterations in systemic inflammation parameters, including reactive oxygen species (ROS) production in circulating leukocytes and leukocyte infiltration in the sigmoid. Sigmoid damage was assessed using digestive enzyme (intestinal fatty acid binding protein - I-FABP) leakage, a marker of intestinal integrity. Results: Suprarenal cross clamping caused deterioration of all systemic parameters. Only cold renal perfusion protected against serum creatinine rise: 0.45 mg/dL without renal perfusion, 0.33 mg/dL, and 0.14 mg/dL (p = .009) with warm and cold perfusion, respectively. Microcirculation in the sigmoid was attenuated with warm (p = .002) and cold renal perfusion (p = .002). A smaller increase of ROS production (p = .034) was seen only after cold perfusion, while leukocyte infiltration in the sigmoid colon decreased after warm (p = .006) and cold perfusion (p = .018). Finally, digestive enzyme leakage increased more without (1.5AU) than with warm (1.3AU; p = .007) and cold renal perfusion (1.2AU; p = .002). Conclusions: Renal ischaemia/reperfusion injury after suprarenal cross clamping decreased microcirculatory flow, increased systemic ROS production, leukocyte infiltration, and I-FABP leakage in the sigmoid colon. Cold renal perfusion was superior to warm perfusion and reduced renal damage and had beneficial systemic effects, reducing sigmoid damage in this experimental study

    Rapid frequency-dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes

    No full text
    KEY POINTS: Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown. Rapid stimulation frequency-dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency. These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. ABSTRACT: Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)-based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+ ]m ) was measured at different stimulation frequencies (0.1-4 Hz) and external calcium concentrations (1.8-3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura-4AM. The increases in [Ca2+ ]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+ ]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+ ]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium-calcium exchanger (mNCE) resulted in a rise in [Ca2+ ]m at baseline and, paradoxically, in an acceleration of Ca2+ release. IN CONCLUSION: rapid increases in [Ca2+ ]m allow for fast adjustment of mitochondrial ATP production to increases in myocardial demand on a beat-to-beat basis and mitochondrial calcium release depends on mNCE activity and mitochondrial calcium buffering

    Dopamine induces lipid accumulation, NADPH oxidase-related oxidative stress, and a proinflammatory status of the plasma membrane in H9c2 cells

    No full text
    Excess catecholamine levels are suggested to be cardiotoxic and to underlie stress-induced heart failure. The cardiotoxic effects of norepinephrine and epinephrine are well recognized. However, although cardiac and circulating dopamine levels are also increased in stress cardiomyopathy patients, knowledge regarding putative toxic effects of excess dopamine levels on cardiomyocytes is scarce. We now studied the effects of elevated dopamine levels in H9c2 cardiomyoblasts. H9c2 cells were cultured and treated with dopamine (200 ÎŒM) for 6, 24, and 48 h. Subsequently, the effects on lipid accumulation, cell viability, flippase activity, reactive oxygen species (ROS) production, subcellular NADPH oxidase (NOX) protein expression, and ATP/ADP and GTP/GDP levels were analyzed. Dopamine did not result in cytotoxic effects after 6 h. However, after 24 and 48 h dopamine treatment induced a significant increase in lipid accumulation, nitrotyrosine levels, indicative of ROS production, and cell death. In addition, dopamine significantly reduced flippase activity and ATP/GTP levels, coinciding with phosphatidylserine exposure on the outer plasma membrane. Furthermore, dopamine induced a transient increase in cytoplasmic and (peri)nucleus NOX1 and NOX4 expression after 24 h that subsided after 48 h. Moreover, while dopamine induced a similar transient increase in cytoplasmic NOX2 and p47(phox) expression, in the (peri)nucleus this increased expression persisted for 48 h where it colocalized with ROS. Exposure of H9c2 cells to elevated dopamine levels induced lipid accumulation, oxidative stress, and a proinflammatory status of the plasma membrane. This can, in part, explain the inflammatory response in patients with stress-induced heart failur

    The effects of hyperoxia on microvascular endothelial cell proliferation and production of vaso-active substances

    No full text
    Abstract Background Hyperoxia, an arterial oxygen pressure of more than 100 mmHg or 13% O2, frequently occurs in hospitalized patients due to administration of supplemental oxygen. Increasing evidence suggests that hyperoxia induces vasoconstriction in the systemic (micro)circulation, potentially affecting organ perfusion. This study addresses effects of hyperoxia on viability, proliferative capacity, and on pathways affecting vascular tone in cultured human microvascular endothelial cells (hMVEC). Methods hMVEC of the systemic circulation were exposed to graded oxygen fractions of 20, 30, 50, and 95% O2 for 8, 24, and 72 h. These fractions correspond to 152, 228, 380, and 722 mmHg, respectively. Cell proliferation and viability was measured via a proliferation assay, peroxynitrite formation via anti-nitrotyrosine levels, endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) levels via q-PCR and western blot analysis. Results Exposing hMVEC to 50 and 95% O2 for more than 24 h impaired cell viability and proliferation. Hyperoxia did not significantly affect nitrotyrosine levels, nor eNOS mRNA and protein levels, regardless of the exposure time or oxygen concentration used. Phosphorylation of eNOS at the serine 1177 (S1177) residue and ET-1 mRNA levels were also not significantly affected. Conclusions Exposure of isolated human microvascular endothelial cells to marked hyperoxia for more than 24 h decreases cell viability and proliferation. Our results do not support a role of eNOS mRNA and protein or ET-1 mRNA in the potential vasoconstrictive effects of hyperoxia on isolated hMVEC

    Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction

    No full text
    OBJECTIVES: The present study investigated whether systemic, low-grade inflammation of metabolic risk contributed to diastolic left ventricular (LV) dysfunction and heart failure with preseved ejection fraction (HFpEF) through coronary microvascular endothelial activation, which alters paracrine signalling to cardiomyocytes and predisposes them to hypertrophy and high diastolic stiffness. BACKGROUND: Metabolic risk is associated with diastolic LV dysfunction and HFpEF. METHODS: We explored inflammatory endothelial activation and its effects on oxidative stress, nitric oxide (NO) bioavailability, and cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signalling in myocardial biopsies of HFpEF patients and validated our findings by comparing obese Zucker diabetic fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1)-HFpEF rats to ZSF1-Control (Ctrl) rats. RESULTS: In myocardium of HFpEF patients and ZSF1-HFpEF rats, we observed the following: 1) E-selectin and intercellular adhesion molecule-1 expression levels were upregulated; 2) NADPH oxidase 2 expression was raised in macrophages and endothelial cells but not in cardiomyocytes; and 3) uncoupling of endothelial nitric oxide synthase, which was associated with reduced myocardial nitrite/nitrate concentration, cGMP content, and PKG activity. CONCLUSIONS: HFpEF is associated with coronary microvascular endothelial activation and oxidative stress. These lead to a reduction of NO-dependent signalling from endothelial cells to cardiomyocytes, which can contribute to the high cardiomyocyte stiffness and hypertrophy observed in HFpEF
    corecore