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Abstract
Background: NADPH oxidases play an essential role
in reactive oxygen species (ROS)-based signaling in
the heart. Previously, we have demonstrated that
(peri)nuclear expression of the catalytic NADPH
oxidase subunit NOX2 in stressed cardiomyocytes,
e.g. under ischemia or high concentrations of
homocysteine, is an important step in the induction
of apoptosis in these cells. Here this ischemia-induced
nuclear targeting and activation of NOX2 was
specified in cardiomyocytes. Methods: The effect of
ischemia, mimicked by metabolic inhibition, on nuclear
localization of NOX2 and the NADPH oxidase subunits
p22phox and p47phox, was analyzed in rat neonatal
cardiomyoblasts (H9c2 cells) using Western blot,
immuno-electron microscopy and digital-imaging
microscopy. Results: NOX2 expression significantly
increased in nuclear fractions of ischemic H9c2 cells.
In addition, in these cells NOX2 was found to
colocalize in the nuclear envelope with nuclear pore
complexes, p22phox, p47phox and nitrotyrosine residues,

a marker for the generation of ROS. Inhibition of
NADPH oxidase activity, with apocynin and DPI,
significantly reduced (peri)nuclear expression of
nitrotyrosine. Conclusion: We for the first time show
that NOX2, p22phox and p47phox are targeted to and
produce ROS at the nuclear pore complex in ischemic
cardiomyocytes.

Introduction

Reactive oxygen species (ROS) are oxygen-
containing molecules with one or more unpaired electrons
that can be highly reactive with other molecules. For many
years ROS were viewed as the inevitable but unwanted
by-product of an aerobic existence that inflict cellular
damage by reacting with macromolecules such as DNA,
lipids and proteins [1]. However, it is now known that
ROS at lower concentrations function as signaling
molecules that react with cysteine residues on certain
proteins and thereby alter their functional state [2].
Through this so called redox signaling, ROS are involved
in the regulation of diverse physiological processes such
as cell proliferation, migration, gene expression and
apoptosis [3].
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The multi-component NADPH oxidase has been
shown to play an essential role in redox-dependent
signaling [4, 5]. Because ROS are diffusible and short-
lived molecules, tight regulation of the activation and lo-
calization of NADPH oxidase is essential for mediating
redox signaling at the right place and time. The mecha-
nism of activation of NADPH oxidase is well character-
ized in neutrophilic granulocytes and is known to occur
through a complex series of interactions with several
subunits/activating proteins which in resting cells reside
in the cytosol [6]. The flavocytochrome b558 is the cen-
tral membrane-associated component and is composed
of the catalytic subunit gp91phox (NOX2) non-covalently
bound to p22phox that provides membrane stabilization and
a docking site for the cytosolic subunit/activating protein
p47phox [7]. As such, at the onset of the respiratory burst
in intact neutrophilic granulocytes, p47phox is phosphor-
ylated and translocates to the cytoplasmic region of
p22phox [7]. Like p22phox, NOX2 also contains binding sites
for phosphorylated p47phox to form the active enzyme [8].

While the activation process of NADPH oxidase
has been elucidated in detail in neutrophilic granulocytes,
the precise structure and mechanisms of activation/tar-
geting of NADPH oxidase in cardiomyocytes is less
known. Our group has shown that ischemia or high con-
centrations of homocysteine induced (peri)nuclear NOX2
expression in cardiomyocytes [9, 10]. This (peri)nuclear
NOX2 expression colocalized with local ROS generation
resulting in apoptosis. Inhibition of ROS, using the
flavoenzyme inhibitor diphenylene iodonium (DPI) or the
NADPH oxidase inhibitor apocynin namely led to a sig-
nificant decrease of apoptosis [9]. The NADPH oxidase
subunits p22phox and p47phox have both been demonstrated
to coincide with elevated ROS levels in rat hearts [11-
13]. Quantitative PCR namely showed increased levels
of left ventricular mRNA of p22phox and p47phox in spon-
taneously hypertensive rats [11] as well as salt-sensitive
hypertensive rats [12, 13]. Next to p22phox and p47phox,
increased levels of left ventricular mRNA of gp91phoxwere
also found [11, 13]. However, in these studies total left
ventricular mRNA was used and therefore no distinction
was made between cardiomyocytes and other cardio-
vascular cells [11, 13]. Neither protein levels, nor subcel-
lular locations of these components were analyzed. Fur-
thermore, in human left ventricular myocardium from pa-
tients with ischemic cardiomyopathy, superoxide release
(determined by chemiluminescence) coincided with in-
creased cardiomyocyte membrane expression of p47phox

[14]. However, for this total membrane extractions were
used without distinction between subcellular compart-

ments [14]. As far as we know, targeting of NOX2, p22phox

and p47phox to (peri)nuclear regions in ischemic
cardiomyocytes has not been studied before. This we
have analyzed in the present study in ischemic
cardiomyocytes.

Materials and Methods

Cell-culture and metabolic inhibition
Rat cardiomyoblasts cells (H9c2 cells), derived from em-

bryonic rat hearts, were obtained from the American Type Cul-
ture Collection ((ATCC), Manassas, VA, USA) and cultured in
culture medium: dulbecco’s modified eagles medium (DMEM,
Cambrex Corporation, East Rutherford, NJ, USA) with addition
of 10% (v/v) heat inactivated fetal calf serum (FCS,
BioWhittaker, Walkersville, MD, ASU), 100 IU/ml penicillin
(Yamanouchi Europe BV, Meppel, The Netherlands), 100 ug/ml
streptomycin (Radiopharma Fisiopharme, Palomonte, Italy) and
2 mM L-glutamine (Invitrogen Corporation, Carlsbad, CA,
USA). H9c2 cells were cultured at a 5% CO2 atmosphere at
37°C. To mimick ischemia H9c2 cells were incubated for 2 hours
with a metabolic inhibition buffer (0.9 mM CaCl2 H2O, 106 mM
NaCl, 3.8 mM NaHCO3, 4.4 mM KCL, 1 mM MgCl2 H2O, pH 6.6),
including 20 mM (2-deoxy)glucose to impair glycolysis, and 5
mM NaCN to impair the mitochondrial electron transport chain
[15].

Western blotting
H9c2 cells were grown to a confluency of 70-90%. After

treatment the cells were lysed in buffer and nuclear and cy-
tosol/membranes were separated using NE-PER Nuclear and
Cytoplasmic Extraction Kit (Thermo scientific, Rockford, USA).
Samples were dissolved in Laemmli sodium dodecyl sulfate
(SDS) sample buffer, stirred and heated at 95°C for 10 minutes.
The samples were subjected to SDS polyacrylamide 10% gel
electrophoresis, transferred onto nitrocellulose membranes and
immunoblotted with mouse anti-NOX2 ([16], 1:250) or rabbit
anti-Lamin B1 (1:250, Santa Cruz Biotechnology Inc, Heidelberg,
Germany) for 1 hour at RT, followed by incubation o/n at 4°C.
The following day, blots were washed and incubated with rab-
bit anti-mouse HRP (1:500, Dako, Glostrup, Denmark) or goat
anti-rabbit HRP (1:500, Dako) for 30 minutes at RT. Blots were
visualized by enhanced chemiluminescence (1:40, Amersham
Biosciences AB, Uppsala, Sweden) and quantified with a
charge-coupled device camera (Fuji Science Imaging Systems,
Düsseldorf, Germany) in combination with AIDA Image
Analyzer software (Isotopenmessgeräte, Staubenhardt, Ger-
many). To ensure successful separation of these fractions,
immunoblotting for nuclear protein Lamin B1, an intermediate-
filament protein of the nuclear lamina [17], was performed. Lamin
B was detected only in the nuclear fractions (data not shown).

Immuno-Electron Microscopy
Ischemically challenged H9c2 cells were fixed for 2 hours

in 2% paraformaldehyde with 0,2% glutaraldehyde in 0.1 M
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PHEM buffer (60 mM PIPES, 25 mM HEPES, 2 mM MgCl2, 10
mM EGTA, pH 6.9) and then processed for ultrathin
cryosectioning as previously described. Briefly, 50-nm
cryosections were cut at -120º C using diamond knives in a
cryoultramicrotome (Leica Aktiengesellschaft, Vienna, Austria)
and transferred with a mixture of sucrose and methylcellulose
onto formvar-coated copper grids. The grids were placed on
35-mm petri dishes containing 2% gelatine. Ultrathin frozen
sections were incubated at room temperature (RT) with mouse
anti-NOX2 ([16], 1:30) followed by a rabbit anti-mouse bridging
antibody and then incubated with 10-nm protein A-conjugated
colloidal gold (EM Lab, Utrecht University, Netherlands) as
described [18]. After immunolabeling, the sections were
embedded in a mixture of methylcellulose and uranyl acetate
and examined with a Philips CM10 electron microscope (FEI
company, Eindhoven, The Netherlands).

Digital-Imaging Microscopy
Two days before metabolic inhibition H9c2 cells were

passaged onto sterile Lab-Tek II 4-well chamber CC2 glass slides
(Nalge Nunc International, Naperville, IL, USA). Apocynin (100
μM, Sigma-Aldrich, St. Louis, MO, USA) and diphenylene
iodonium (DPI; 10 μM, Sigma-Aldrich) were used to inhibit
NADPH oxidase activity [9]. After treatment, cells were fixed
with 4% paraformaldehyde for 10 minutes at 37 C and
permeabilized with 0.2% Triton for 10 minutes at RT. The cells
were subsequently incubated with the primary antibodies for 1
hour at RT followed by incubation overnight at 4°C. The pri-
mary antibodies were rabbit anti-gp91phox (NOX2: 1:50, Upstate,
North Billerica, MA, USA), mouse anti-p22phox ([19], 1:25), goat
anti-p47phox (1:50, Santa Cruz Biotechnology Inc, Heidelberg,
Germany), rabbit anti-nitrotyrosine, as an indirect marker of
ROS generation [20] (1:50, Invitrogen, Carlsbad, California,
USA) and mouse anti-nucleoporins (monoclonal 414 [21],
NUP62, NUP153, NUP214 and NUP358, protein complexes as-
sociated with the nuclear pore complex [21]: 1:25). The cells
were then incubated with the secondary antibodies Alexa Fluor
568-labeled donkey anti-goat (Invitrogen, 1:40), Alexa Fluor
488-labeled donkey anti-mouse (Invitrogen, 1:40), and Alexa
Fluor 647-labeled donkey anti-rabbit (Invitrogen, 1:40) for 30
min at RT in the dark. Negative controls with only the second-

ary antibody were included to assess nonspecific binding. All
negative controls showed no staining (data not shown). Be-
fore visualization, HardSet mounting medium containing 4',6-
diamidino-2-phenylindole (DAPI; H-1500, Vector Laboratories
Inc, Burlingame, CA, USA) was added and the cells were cov-
ered.

2D/3D stack optical sections were acquired and analyzed
with a 3I MarianasTM digital-imaging microscopy workstation
(Zeiss Axiovert 200 M inverted microscope; Cark Zeiss,
Sliedrecht, The Netherlands) equipped with a nanostepper
motor (Z-axis increaments: 10 nm) and a thermo-electrically
cooled EMCCD camera (QuantEM: 512C, 512x512 pixels;
Photometrics, Tucson, AZ, USA). Exposures, objectives and
pixel binning were automatically recorded with each 3D stack/
2D image and stored in memory (Dell Dimension workstation:
3.0 GHz Xenon dual processor, 4 GB RAM). The microscope,
camera and all other aspects of data acquisition as well as data
processing were controlled by SlidebookTM software (version
4.2; Intelligent Imaging Innovations, Denver, CO, USA).

Statistics
The GraphPad Prism program (windows version 5) was

used for statistical analysis. To evaluate whether observed
differences were significant, T-tests or One-way ANOVA with
post hoc Bonferroni tests were used. All values are expressed
as mean ± standard error of the mean (SEM). A p value (two
sided) of 0.05 or less was considered to be significant.

Results

Nuclear NOX2 expression is upregulated in
ischemic cardiomyocytes
Previously we observed using fluorescent

microscopy that NOX2 targeted to the nucleus in
cardiomyocytes under ischemic insult [9]. Now, we
quantified NOX2 in nuclear fraction of non-ischemic
(control) and ischemic cardiomyocytes using Western blot
analysis.

Fig. 1. Nuclear NOX2 expression is upregulated
in ischemic cardiomyocytes. Western blot analy-
sis of NOX2 expression in nuclear (A) and cy-
tosol/membrane (B) fractions of control and
ischemic H9c2 cells. 30 μg per lane of protein was
added. The graphs represent the signal intensities
relative to those in control cells (n=3).
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NOX2 protein was detected at approximately 60
kDa (Fig. 1). In the nuclear fraction of control
cardiomyocytes a low basal level of NOX2 was found
(Fig. 1A). Ischemia significantly increased the amount
of NOX2 in the nuclear fraction 1.87±0.06 fold (p<0.001).
Similarly, in the cytosol/membrane fraction a low basal
level of NOX2 was found in control cardiomyocytes, that
significantly increased 1.37±0.05 fold after ischemia
(p<0.01, Fig. 1B).

NOX2 colocalizes with the nuclear pore complex
and ROS at the nuclear envelope ischemic
cardiomyocytes
The induced nuclear localization of NOX2 in

ischemic cardiomyocytes was further specified using
immuno-electron microscopy. In ischemic H9c2 cells
NOX2 was found in and in close proximity of the nuclear
envelope (Fig. 2, arrows).

Because external and internal membranes of the
nuclear envelope are fused at the site of nuclear pore
complexes (NPCs) [22, 23], that are involved in coordi-
nating the delivery of genetic information to the cytoplas-
mic protein synthesis machinery and other nucleocyto-
plasmic exchange [24], we next analyzed NOX2 locali-
zation in relation to the NPC using digital-imaging
microscopy (Fig. 3). In ischemic H9c2 cells 3D stack
images showed (peri)nuclear NOX2 expression (Fig.
3-IA, IIA, red signal). NOX2 was found to colocalize
with NUP (Fig. 3-IB, green signal) as shown in Fig. 3-IC
(yellow signal, arrows). NOX2 was found dispersed
(peri)nuclear and also colocalized with local ROS

(Fig. 3-IIB, green signal) as shown in Fig. 3-IIC (yellow
signal, arrows). In control cells 3D stack images showed
a very low basal (peri)nuclear presence of NOX2
(Fig. 3-IE), while no (peri)nuclear nitrotyrosine was found
(Fig. 3-IIE).

The NADPH oxidase subunits p47phox and p22phox

colocalize with NOX2 at the nuclear pore complex
in ischemic cardiomyocytes
To analyze whether the NADPH oxidase subunits

p47phox (needed for activation and targeting of NADPH
oxidase) [25] and p22phox (needed for membrane
stabilization and docking site for NADPH oxidase) [7]
colocalize with NOX2 at the NPC in ischemic
cardiomyocytes, these subunits were also analyzed using
digital-imaging microscopy (Fig. 4).

In ischemic H9c2 cells (peri)nuclear NOX2 (Fig.
4-IA, blue signal) colocalized with both p47phox (Fig. 4-
IB, red signal) and p22phox (Fig. 4-IC, green signal) as
shown in Fig. 4-ID (white signal, arrows). This
colocalization of NOX2 with p47phox was found to be
homogenous, while p22phox was found dispersed (Fig.
4-ID). This (peri)nuclear expression of p47phox (Fig.
4-IIB, red signal) and p22phox (Fig. 4-IIC, green signal)
also colocalized with NUP (Fig. 4-IIA, blue signal) as
shown in Fig. 4-IID (white signal, arrows), indicating that
in addition to NOX2, these NADPH oxidase subunits are
also expressed at the NPC in ischemic cardiomyocytes.
In the (peri)nuclear region of control cells, 3D stack
images showed a low basal presence p47phox, while
p22phox was virtually absent (Fig. 4-IIE).

Fig. 2. Localization of NOX2 at the nu-
clear envelope in ischemic cardio-
myocytes. Immuno-electron microscopy
showing the association of NOX2 with
the nuclear envelope in ischemic H9c2
cells. The nuclear envelope (NE) is sepa-
rating the nucleus (N) from the cytosol
(C). Gold particles labeling NOX2 (ar-
rows) are located in close proximity of
the nuclear envelope.
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Inhibition of NADPH oxidase reduced ischemia-
induced (peri)nuclear ROS production
To assess whether the observed nuclear ROS

production was due to NADPH oxidase activity, the
effects of the NADPH oxidase inhibitors apocynin and
DPI on ischemia-induced nitrotyrosine expression were
analyzed using digital-imaging microscopy.

As expected, ischemia significantly increased the
presence of nitrotyrosine in (peri)nuclear regions with
88.8±5% (p<0.001) compared to control cells (Fig. 5).
Apocynin and DPI significantly reduced the presence
of nitrotyrosine in (peri)nuclear regions compared
to ischemia with 101.2±3% and 82.9±3%, respectively
(p<0.001). Both these inhibitors reduced the (peri)nuclear
levels of nitrotyrosine to those found in control cells,
indicating that the increase in (peri)nuclear ROS

Fig. 3. NOX2 colocalizes with ROS production and the nu-
clear pore complex in ischemic cardiomyocytes. Nuclear locali-
zation of NOX2 in H9c2 cells as shown by digital-imaging
microscopy. Cells were stained for NOX2 (red; I and II), NUP
(green; I) or nitrotyrosine (green; II). DNA was stained by DAPI
(blue). Pictures D demonstrate that under ischemia (peri)nuclear
NOX2 focally coincides with NUP (ID) or ROS (IID), visible as
yellow signal (arrows). Pictures E demonstrate that under con-
trol very low basal (peri)nuclear NOX2 is present (IE), while no
(peri)nuclear nitrotyrosine was found (IIE). Original magnifica-
tion 63x (n=4).

Fig. 4. The NADPH oxidase subunits p47phox and p22phox

colocalize with NOX2 at the nuclear pore complex in ischemic
cardiomyocytes. Nuclear localization of NOX2 and the NADPH
oxidase subunits p47phox and p22phox in H9c2 cells as shown by
digital-imaging microscopy. Cells were stained for p47phox (red;
I and II), p22phox (green; I and II), NOX2 (blue; I) or NUP (blue;
II). Picture D depicts that under ischemia (peri)nuclear p47phox

and p22phox colocalize with NOX2 (ID) or NUP (IID), visible as
white signal (arrows). Pictures E demonstrate that under con-
trol low basal p47phox is present, while p22phox was virtually ab-
sent (IIE). Original magnification 63x (n=4).

Fig. 5. Inhibition of NADPH oxidase reduces ischemia-induced
(peri)nuclear ROS production. Quantification of digital-imaging
microscopy analysis of (peri)nuclear nitrotyrosine expression
in H9c2 cells. The changes are shown as the difference ( ) in
the staining intensity compared to control cells (n=4).
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under ischemia is predominantly due to NADPH oxidase
activity.

Discussion

In previous work, we have demonstrated in
cardiomyocytes that NOX2 is upregulated under ischemia
or high concentrations of homocysteine, and is
translocated to (peri)nuclear regions, colocalizing
with apoptosis [9, 10]. We, to the best of our knowledge,
are the first to show now that NOX2, p22phox and
p47phox colocalize with the NPC in ischemic H9c2
cells, colocalizing with local ROS production.

Cell signaling is mediated by specific and
reversible modifications of proteins and other biomolecules
that participate in specific cascades of signal transduc-
tion. Most well-known among these modifications is
the phosphorylation and dephosphorylation of molecules
[26]. However, in recent years several other types of
modifications have been shown to also be of importance.
Most prominent among these newly discovered modifi-
cations are the oxidative modifications that are at the
base of redox signaling [27, 28]. Redox signaling is
mediated by generation of ROS that alter the oxidation
state of specific reactive-cysteine residues in target
proteins [27, 29]. There are several different forms of
modification possible that all lead to an altered
structural and functional state of the target protein and
consequently adapted signal transmission [30, 31].

While there are several groups of enzymes that
generate ROS for signal transduction, the NADPH
oxidases are considered unique in that they generate ROS
in a highly regulated manner [32]. Unlike kinases
and phosphatases the NADPH oxidases have no target-
specific protein surface that mediates signaling specificity.
Instead, the NADPH oxidase site of ROS generation
has to be brought into close proximity of the reactive
cysteine of the target protein to warrant specific signal
transduction [27, 29]. In redox signaling this principle
is all the more important because ROS are very
short-lived and ready to react with a multitude of
non-specific biomolecules [27, 29].

Crucial for its function is that NADPH oxidases
are targeted to their site of action as part of a multi-
protein complex. This has extensively been studied in
neutrophilic granulocytes. However, recent studies
report that the same is true for vascular cells. The
NADPH oxidase subunit p47phox namely has been
demonstrated to form an adaptor between NADPH

oxidase and its targeting complexes in caveolae/lipid
rafts of angiotensin II-stimulated human vascular smooth
muscle cells [33], and in lamellipodial leading edges
of vascular endothelial growth factor (VEGF)- [34, 35]
and tumor necrosis factor alpha (TNF )- [36] stimulated
human endothelial cells. In endothelial cells stimulated
with TNF  also an increase in p47phox-p22phox complex
formation was found in immunoprecipitations of whole-
cell extracts [36]. Next to endothelial cells, in hearts
of spontaneously hypertensive rats [11] as well as salt-
sensitive hypertensive rats [12, 13] quantitative
PCR showed an increased left ventricular mRNA of
p47phox and p22phox, coinciding with elevated ROS
levels. Furthermore, superoxide release (determined by
chemiluminescence) coinciding with increased p47phox

expression in cardiomyocyte membrane extractions has
also been found in human left ventricular myocardium
from patients with ischemic cardiomyopathy [37].
However, in these studies total membrane extractions
were used without distinction between subcellular
compartments [14]. We now show that NOX2, p47phox

and p22phox are targeted at the NPC in ischemic
cardiomyocytes. This coincided with a significant
increase in (peri)nuclear nitrotyrosine, indicative for ROS
production at that location. Furthermore, the NADPH
oxidase inhibitors apocynin and DPI both significantly
counteracted this ischemia-induced (peri)nuclear ROS
production, indicating that the NADPH oxidase
components at the nucleus form an active complex.

The NPC is a large channel-like structure in the
nuclear envelope that bridges the gap between the
external and internal layers of the envelope [22, 23].
Composed of ~500-1000 proteins that represent
~30 different NUPs [21], the obvious function of the
pore complex is to control the passage of molecules
between the nucleus and the cytoplasm [38]. However,
in recent years it has been shown to also play an
important role in the regulation of nuclear processes,
such as DNA replication, DNA repair, transcription and
RNA processing [24, 39]. Currently we can only speculate
regarding the exact mechanism(s) whereby NOX2-
related ROS interfere with apoptotic signalings in ischemic
cardiomyocytes. The specific localization we now
found of an active ROS producing NOX2-containing
NADPH oxidase complex at the NPC offers
some interesting mechanistic possibilities regarding
its function. There are a number of redox-sensitive
transcription factors that are either activated or inactivated
through redox modifications [40, 41]. Two redox-sensitive
transcription factors, activator protein 1 (AP-1)
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and nuclear factor kappa B (NF-kappaB), have been
implicated in the regulation of cardiomyocyte apoptosis
[42]. NOX2-related ROS production at the NPC can thus
regulate gene expression via redox modification of
transcription factors and in this way contribute to the
induction of apoptosis in ischemic cardiomyocytes.
On the other hand, ROS, via the formation of peroxynitrite,
may introduce DNA damage directly and, in this
way, can also contribute in the process of apoptosis [43].
Studies in C.elegans and rat brain have shown an
age-dependent deterioration (i.e. increased leakiness) of
the NPC linked to oxidative stress [44]. It is well-known
that during apoptosis the permeability of the NPC
increases through caspase-mediated proteolysis
of specific NUPs [45]. ROS-mediated oxidation of
NPCs may therefore contribute to the increased
permeability of the NPC perhaps during early stages of
apoptosis. Other mechanism(s) of NOX2-mediated
ROS involved in induction of cardiomyocyte apoptosis,
however, can not be excluded.

Taken together, we have shown that NOX2, p22phox

and p47phox are targeted to the NPC in ischemic
cardiomyocytes colocalizing with local ROS production.
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