14 research outputs found

    Effect of a commercial alcohol ethoxylate surfactant (C11–15E7) on biodegradation of phenanthrene in a saline water medium by Neptunomonas naphthovorans

    Full text link
    Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.<br /

    Coating of TiO2 Thin Films on the Surface of SiO2 Microspheres: Toward Industrial Photocatalysis

    No full text
    A core/shell SiO/TiO photocatalyst was prepared using a liquid-phase deposition (LPD) method. Zeta-potential measurement showed that deposition of a layer of polyelectrolyte on the surface of SiO microspheres was a prerequisite for subsequent deposition of the TiO shell with a controllable and uniform thickness. The photocatalytic activity of the core/shell SiO/TiO catalyst for decomposition of Orange II in liquid phase was observed to be comparable with that of P25 (a commercial TiO product of Degussa). Experimental data also showed that the SiO/TiO core/shell nanostructured photocatalyst can be easily separated from the reaction medium by sedimentation, and the solid can be recycled and reused. Thus, the photocatalyst described in this work represents a new catalyst system with a high potential for practical applications in treating wastewater

    Removal of Mercury (II) by EDTA-Functionalized Magnetic CoFe2O4@SiO2 Nanomaterial with Core-Shell Structure

    No full text
    In order to reduce the difficulty and risk of operation, decrease the preparation time and improve the adsorption performance of magnetic nano-silicon adsorbent with core-shell structure, a carboxylated CoFe2O4@SiO2 was prepared by EDTA-functionalized method using a safe, mild and simple hydrothermal method. The results show that the prepared material of CoFe2O4@SiO2-EDTA has a maximum adsorption capacity of 103.3 mg/g for mercury ions (Hg(II)) at pH = 7. The adsorption process of Hg(II) is a chemical reaction involving chelation and single-layer adsorption, and follows the pseudo-second-order kinetic and Langmuir adsorption isotherm models. Moreover, the removal of Hg(II) is a spontaneous and exothermic reaction. The material characterization, before and after adsorption, shows that CoFe2O4@SiO2-EDTA has excellent recyclability, hydrothermal stability and fully biodegradable properties. To summarize, it is a potential adsorption material for removing heavy metals from aqueous solutions in practical applications

    Highly Effective Anti-Organic Fouling Performance of a Modified PVDF Membrane Using a Triple-Component Copolymer of P(Stx-co-MAAy)-g-fPEGz as the Additive

    No full text
    In this study, a triple-component copolymer of P(Stx-co-MAAy)-g-fPEGz containing hydrophobic (styrene, St), hydrophilic (methacrylic acid, MAA), and oleophobic (perfluoroalkyl polyethylene glycol, fPEG) segments was synthesized and used as an additive polymer to prepare modified PVDF membrane for enhanced anti-fouling performance. Two compositions of St:MAA at 4:1 and 1:1 for the additive and two blending ratios of the additive:PVDF at 1:9 and 3:7 for the modified membranes were specifically examined. The results showed that the presence of the copolymer additive greatly affected the morphology and performance of the modified PVDF membranes. Especially, in a lower ratio of St to MAA (e.g., St:MAA at 1:1 versus 4:1), the additive polymer and therefore the modified PVDF membrane exhibited both better hydrophilic as well as oleophobic surface property. The prepared membrane can achieve a water contact angle at as low as 48.80&deg; and display an underwater oil contact angle at as high as 160&deg;. Adsorption experiments showed that BSA adsorption (in the concentration range of 0.8 to 2 g/L) on the modified PVDF membrane can be reduced by as much as 93%. From the filtration of BSA solution, HA solution, and oil/water emulsion, it was confirmed that the obtained membrane showed excellent resistance to these organic foulants that are often considered challenging in membrane water treatment. The performance displayed slow flux decay during filtration and high flux recovery after simple water cleaning. The developed membrane can therefore have a good potential to be used in such applications as water and wastewater treatment where protein and other organic pollutants (including oils) may cause severe fouling problems to conventional polymeric membranes

    A Mild and Facile Synthesis of Amino Functionalized CoFe2O4@SiO2 for Hg(II) Removal

    No full text
    To avoid the dangerous operational conditions, shorten the preparation time, and improve the adsorption performance of amino-functionalized nanomagnetic materials with a core&ndash;shell structure, a magnetic nanocomposite of CoFe2O4@SiO2 was successfully functionalized with amino group (&minus;NH2) through a mild and facile hydrothermal method without the use of any toxic or harmful solvents at a relatively low temperature. The preparation time of the key steps of amino functionalization was shortened from 30 h to about 10 h. The core-shell structure and successful grafting were confirmed by various means. The amino-functionalized CoFe2O4@SiO2 was used for the removal mercury (Hg(II)), a heavy metal, and exhibited excellent magnetic properties and a high Langmuir adsorption capacity of 149.3 mg Hg(II)/g. The adsorption of Hg(II) onto CoFe2O4@SiO2&ndash;NH2 followed the pseudo-second-order kinetic equation and Langmuir model. The thermodynamic data showed that the Hg(II) adsorption process was achieved through spontaneous exothermic and monolayer adsorption with electrostatic adsorption and chemisorption. In addition, the as-prepared CoFe2O4@SiO2&ndash;NH2 nanoparticles had a good reusable value, good application performance and stability, and can provide a mild and facile way to remove heavy metals from aqueous solution
    corecore