9 research outputs found
Electronic Properties of the Active Sites Present at the (011) Surface of MoO
The DFT method was used to describe the electronic structure of the catalytically interesting (011) surface of molybdenum dioxide, with attention being particularly focused on the properties of the active sites, both molybdenum and oxygen, present at this surface. In addition, a comparison of (011)MoO 2 and (100)MoO 3 surfaces was undertaken since both surfaces contain not only differently coordinated oxygen sites but also the bare molybdenum centres. The electronic structures of both surfaces were obtained using the cluster method and DFT approach. The local properties of the different surface sites exposed at the (011)MoO 2 surface, viz. five- and six-fold coordinated Mo atoms and nucleophilic O sites with different coordination numbers, have been discussed using charge densities, bond-order indices and molecular orbital diagrams
Oxygen Adsorption and Activation on Cobalt Center in Modified Keggin Anion-DFT Calculations
The influence of the cobalt cation geometric environment on catalytic activity, namely, oxygen adsorption and its activation, was investigated by exploring two groups of systems. The first group was formed by cobalt cation complexes, in which the Co2+ was surrounded by water-H2O or acetonitrile-CH3CN solvent molecules. This represents heteropolyacids salts (ConH3-nPW(Mo)12O40), where the Co2+ acts as a cation that compensates for the negative charge of the Keggin anion and is typically surrounded by solvent molecules in that system. The second group consisted of tungsten or molybdenum Keggin anions (H5PW11CoO39 and H5PMo11CoO39), having the Co2+ cation incorporated into the anion framework, in the position of one addenda atom. Detailed NOCV (Natural Orbitals for Chemical Valence) analysis showed that, for all studied systems, the σ-donation and σ-backdonation active channels of the electron transfer were responsible for the creation of a single Co-OO bond. Depending on the chemical/geometrical environment of the Co2+ cation, the different quantities of electrons were flown from the Co2+ 3d orbital to the π* antibonding molecular orbitals of the oxygen ligand, as well as in the opposite direction. In molybdenum and tungsten heteropolyacids, modified by Co2+ in the position of the addenda atom, activation of O2 was supported by a π-polarization process. Calculated data show that the oxygen molecule activation changed in the following order: H5PMo11CoO39 = H5PW11CoO39 > Co(CH3CN)52+ > Co(H2O)52+
Tungsten and Molybdenum Heteropolyanions with Different Central Ions—Correlation between Theory and Experiment
Density functional theory calculations were carried out to investigate the electronic structures of Keggin-typed [XMo12O40]n− and [XW12O40]n− anions with different heteroatoms (X = Zn2+, B3+, Al3+, Ga3+, Si4+, Ge4+, P5+, As5+, and S6+). The influence of solvent on redox properties of heteropolyanions was discussed. For [XW12O40]n− systems two linear correlation: first, between the experimental redox potential and energies of LUMO orbital; and second, between the experimental redox potential and total energy interaction (calculated between internal tetrahedron (XO4n−), and rest of Kegging anion skeleton, (W12O36)) were designated. Taking into account the similarity of XW12O40n− and XMo12O40n− systems (in geometry and electronic structure), the estimated redox potential of molybdenum heteropolyanions (with X being p block elements) in different solvent were proposed
Comparison of Catalytic Properties of Vanadium Centers Introduced into BEA Zeolite and Present on (010) V2O5 Surface–DFT Studies
Vanadium-based catalysts, in which vanadium is present either as bulk V2O5 or as isolated species, are active in numerous oxidation reactions. In the present study, vanadium speciation and the possibility of its introduction in various forms (V=O, V–OH, V(=O)(–OH)) into the structurally different crystallographic positions in BEA zeolite was considered by means of Density Functional Theory (DFT). Out of nine nonequivalent positions, T2 and T3 positions are the most preferred. The former may accommodate V=O or V–OH, the latter V–OH or V(=O)(–OH). The structural and electronic properties of all possible centers present in the BEA zeolite are then compared with the characteristics of the same species on the most abundant (010) V2O5 surface. It is demonstrated that they exhibit higher nucleophilic character when introduced into the zeolite, and thus, may be more relevant for catalysis