22 research outputs found

    Technical Brief: A novel strategy for enrichment of trabecular meshwork protease proteome

    Get PDF
    We present a novel and simple enrichment strategy to capture trabecular meshwork (TM) protease proteome. The method relies on fractionation of TM tissue into cytosolic and nuclear extracts and subsequent affinity enrichment of proteases on peptide inhibitors. A large repertoire of available protease substrate analog peptides enables an improved capture of TM protease proteome compared to SDS–PAGE fractionation alone. Peptide analog inhibitors of protease substrates are immobilized on a protein A or G column using 254 nm intense ultraviolet (UV) light. The TM cytosolic protein extract incubated on the column is eluted with salt or a buffer with a low hydrogen ion concentration. The resultant protein solution is precipitated with acetone, fractionated on SDS–PAGE, in situ trypsin digested, and subjected to mass spectrometry. This relatively simple protocol enables improved capture of cytosolic proteases. We identified 20 previously reported TM proteins from a single donor tissue using affinity enrichment. The majority of identified proteins were either intracellular proteases or known protease inhibitors. Both serine and cysteine proteases were captured using this strategy with improved coverage compared to our previous identification without affinity enrichment

    Aqueous Humor Dynamics: A Review

    Get PDF
    Glaucoma is a family of optic neuropathies which cause irreversible but potentially preventable vision loss. Vision loss in most forms of glaucoma is related to elevated IOP with subsequent injury to the optic nerve. Secretion of aqueous humor and regulation of its outflow are physiologically important processes for maintaining IOP in the normal range. Thus, understanding the complex mechanisms that regulate aqueous humor circulation is essential for management of glaucoma. The two main structures related to aqueous humor dynamics are the ciliary body and the trabecular meshwork (TM). Three mechanisms are involved in aqueous humor formation: diffusion, ultrafiltration and active secretion. Active secretion is the major contributor to aqueous humor formation. The aqueous humor flow in humans follows a circadian rhythm, being higher in the morning than at night. The aqueous humor leaves the eye by passive flow via two pathways - the trabecular meshwork and the uveoscleral pathway. In humans, 75% of the resistance to aqueous humor outflow is localized within the TM with the juxtacanalicular portion of the TM being the main site of outflow resistance. Glycosaminoglycan deposition in the TM extracellular matrix (ECM) has been suggested to be responsible for increased outflow resistance at this specific site whereas others have suggested deposition of proteins, such as cochlin, obstruct the aqueous humor outflow through the TM. The uveoscleral outflow pathway is relatively independent of the intraocular pressure and the proportion of aqueous humor exiting the eye via the uveoscleral pathway decreases with age

    Cochlin Induced TREK-1 Co-Expression and Annexin A2 Secretion: Role in Trabecular Meshwork Cell Elongation and Motility

    Get PDF
    Fluid flow through large interstitial spaces is sensed at the cellular level, and mechanistic responses to flow changes enables expansion or contraction of the cells modulating the surrounding area and brings about changes in fluid flow. In the anterior eye chamber, aqueous humor, a clear fluid, flows through trabecular meshwork (TM), a filter like region. Cochlin, a secreted protein in the extracellular matrix, was identified in the TM of glaucomatous patients but not controls by mass spectrometry. Cochlin undergoes shear induced multimerization and plays a role in mechanosensing of fluid shear. Cytoskeletal changes in response to mechanosensing in the ECM by cochlin will necessitate transduction of mechanosensing. TREK-1, a stretch activated outward rectifying potassium channel protein known to act as mechanotransducer was found to be expressed in TM. Cochlin expression results in co-expression of TREK-1 and filopodia formation. Prolonged cochlin expression results in expression and subsequent secretion of annexin A2, a protein known to play a role in cytoskeletal remodeling. Cochlin interacts with TREK-1 and annexin A2. Cochlin-TREK-1 interaction has functional consequences and results in changes in cell shape and motility. Annexin A2 expression and secretion follows cochlin-TREK-1 syn-expression and correlates with cell elongation. Thus cytoskeleton changes in response to fluid shear sensed by cochlin are further mediated by TREK-1 and annexin A2

    Cochlin, Intraocular Pressure Regulation and Mechanosensing

    Get PDF
    Fluid shear modulates many biological properties. How shear mechanosensing occurs in the extracellular matrix (ECM) and is transduced into cytoskeletal change remains unknown. Cochlin is an ECM protein of unknown function. Our investigation using a comprehensive spectrum of cutting-edge techniques has resulted in following major findings: (1) over-expression and down-regulation of cochlin increase and decrease intraocular pressure (IOP), respectively. The overexpression was achieved in DBA/2J-Gpnmb+/SjJ using lentiviral vectors, down-regulation was achieved in glaucomatous DBA/2J mice using targeted disruption (cochlin-null mice) and also using lentiviral vector mediated shRNA against cochlin coding region; (2) reintroduction of cochlin in cochlin-null mice increases IOP; (3) injection of exogenous cochlin also increased IOP; (4) increasing perfusion rates increased cochlin multimerization, which reduced the rate of cochlin proteolysis by trypsin and proteinase K; The cochlin multimerization in response to shear stress suggests its potential mechanosensing. Taken together with previous studies, we show cochlin is involved in regulation of intraocular pressure in DBA/2J potentially through mechanosensing of the shear stress

    Potential for transcriptional upregulation of Cochlin in glaucomatous trabecular meshwork: a combinatorial bioinformatic and biochemical analytical approach

    No full text
    PURPOSE. To determine the existence of a relatively higher abundance of potential TFs in glaucomatous trabecular meshwork (TM) that may bind putative promoter regions and affect cochlin protein expression in glaucomatous compared to normal TM. METHODS. Combinatorial bioinformatics and biochemical analyses, using human glaucomatous and normal donor tissue (n Ï­ 4 each). Biochemical analysis included electrophoretic mobility shift assays (EMSAs), filter binding assays (FBAs), coupled in vitro transcription-translation (TNT) assays and promoter mutation analysis. RESULTS. Combinatorial bioinformatics and biochemical analyses revealed the existence of a higher abundance of TFs in glaucomatous than in normal TM nuclear extracts. The evidence of a relatively high abundance of TFs, leading to increased expression of cochlin predicted by bioinformatic and biochemical analyses (EMSA and FBA), was further supported by TNT and promoter mutation TNT assays. CONCLUSIONS. These results support the finding that the observed increased cochlin expression in glaucomatous TM is due to relative elevated abundance of TFs. The results also demonstrate the utility of combinatorial bioinformatic and biochemical analyses for genes with uncharacterized promoter regions. (Invest Ophthalmol Vis Sci. 2009;50:3106 -3111
    corecore