12 research outputs found

    Modeling the Glucose Concentration for the Recombinant E.coli Bioprocesses

    Get PDF
    This article presents the sophisticated-to-date carbon mass balance for fed-batch E.coli bioprocesses. The model originates from the distribution of carbon mass from glucose in biomass, off-gas, and hypothetical solutes. The suggested model complements Pirt's equation as a particular case scenario. The approach uses the linear relationship between biomass carbon content per carbon grams in glucose and average cell population age. The carbon balance brings two potential practical benefits. First, it has the potential to assess the type of cell metabolism pathway and to have a soft sensor for the concentration of dissolved products such as acetates. The measure of glucose concentration suggests another finding, assuring the reliance on off-gas information only. The paper introduces an average carbon content ratio in biomass and off-gas, with numerical values of 0.5 in growth-limiting experiments and 0.27 in nonlimiting ones, which may serve as a decision-making criterion for metabolic pathway detection in the future

    From Physics to Bioengineering: Microbial Cultivation Process Design and Feeding Rate Control Based on Relative Entropy Using Nuisance Time

    No full text
    For historic reasons, industrial knowledge of reproducibility and restrictions imposed by regulations, open-loop feeding control approaches dominate in industrial fed-batch cultivation processes. In this study, a generic gray box biomass modeling procedure uses relative entropy as a key to approach the posterior similarly to how prior distribution approaches the posterior distribution by the multivariate path of Lagrange multipliers, for which a description of a nuisance time is introduced. The ultimate purpose of this study was to develop a numerical semi-global convex optimization procedure that is dedicated to the calculation of feeding rate time profiles during the fed-batch cultivation processes. The proposed numerical semi-global convex optimization of relative entropy is neither restricted to the gray box model nor to the bioengineering application. From the bioengineering application perspective, the proposed bioprocess design technique has benefits for both the regular feed-forward control and the advanced adaptive control systems, in which the model for biomass growth prediction is compulsory. After identification of the gray box model parameters, the options and alternatives in controllable industrial biotechnological processes are described. The main aim of this work is to achieve high reproducibility, controllability, and desired process performance. Glucose concentration measurements, which were used for the development of the model, become unnecessary for the development of the desired microbial cultivation process

    The Kalman Filter Revisited Using Maximum Relative Entropy

    No full text
    In 1960, Rudolf E. Kalman created what is known as the Kalman filter, which is a way to estimate unknown variables from noisy measurements. The algorithm follows the logic that if the previous state of the system is known, it could be used as the best guess for the current state. This information is first applied a priori to any measurement by using it in the underlying dynamics of the system. Second, measurements of the unknown variables are taken. These two pieces of information are taken into account to determine the current state of the system. Bayesian inference is specifically designed to accommodate the problem of updating what we think of the world based on partial or uncertain information. In this paper, we present a derivation of the general Bayesian filter, then adapt it for Markov systems. A simple example is shown for pedagogical purposes. We also show that by using the Kalman assumptions or “constraints”, we can arrive at the Kalman filter using the method of maximum (relative) entropy (MrE), which goes beyond Bayesian methods. Finally, we derive a generalized, nonlinear filter using MrE, where the original Kalman Filter is a special case. We further show that the variable relationship can be any function, and thus, approximations, such as the extended Kalman filter, the unscented Kalman filter and other Kalman variants are special cases as well

    Identification of Functional Bioprocess Model for Recombinant E. Coli Cultivation Process

    No full text
    The purpose of this study is to introduce an improved Luedeking–Piret model that represents a structurally simple biomass concentration approach. The developed routine provides acceptable accuracy when fitting experimental data that incorporate the target protein concentration of Escherichia coli culture BL21 (DE3) pET28a in fed-batch processes. This paper presents system identification, biomass, and product parameter fitting routines, starting from their roots of origin to the entropy-related development, characterized by robustness and simplicity. A single tuning coefficient allows for the selection of an optimization criterion that serves equally well for higher and lower biomass concentrations. The idea of the paper is to demonstrate that the use of fundamental knowledge can make the general model more common for technological use compared to a sophisticated artificial neural network. Experimental validation of the proposed model involved data analysis of six cultivation experiments compared to 19 experiments used for model fitting and parameter estimation

    Simultaneous State and Parameter Estimation Using Maximum Relative Entropy with Nonhomogenous Differential Equation Constraints

    No full text
    In this paper, we continue our efforts to show how maximum relative entropy (MrE) can be used as a universal updating algorithm. Here, our purpose is to tackle a joint state and parameter estimation problem where our system is nonlinear and in a non-equilibrium state, i.e., perturbed by varying external forces. Traditional parameter estimation can be performed by using filters, such as the extended Kalman filter (EKF). However, as shown with a toy example of a system with first order non-homogeneous ordinary differential equations, assumptions made by the EKF algorithm (such as the Markov assumption) may not be valid. The problem can be solved with exponential smoothing, e.g., exponentially weighted moving average (EWMA). Although this has been shown to produce acceptable filtering results in real exponential systems, it still cannot simultaneously estimate both the state and its parameters and has its own assumptions that are not always valid, for example when jump discontinuities exist. We show that by applying MrE as a filter, we can not only develop the closed form solutions, but we can also infer the parameters of the differential equation simultaneously with the means. This is useful in real, physical systems, where we want to not only filter the noise from our measurements, but we also want to simultaneously infer the parameters of the dynamics of a nonlinear and non-equilibrium system. Although there were many assumptions made throughout the paper to illustrate that EKF and exponential smoothing are special cases ofMrE, we are not “constrained”, by these assumptions. In other words, MrE is completely general and can be used in broader ways

    From Physics to Bioengineering: Microbial Cultivation Process Design and Feeding Rate Control Based on Relative Entropy Using Nuisance Time

    Get PDF
    For historic reasons, industrial knowledge of reproducibility and restrictions imposed by regulations, open-loop feeding control approaches dominate in industrial fed-batch cultivation processes. In this study, a generic gray box biomass modeling procedure uses relative entropy as a key to approach the posterior similarly to how prior distribution approaches the posterior distribution by the multivariate path of Lagrange multipliers, for which a description of a nuisance time is introduced. The ultimate purpose of this study was to develop a numerical semi-global convex optimization procedure that is dedicated to the calculation of feeding rate time profiles during the fed-batch cultivation processes. The proposed numerical semi-global convex optimization of relative entropy is neither restricted to the gray box model nor to the bioengineering application. From the bioengineering application perspective, the proposed bioprocess design technique has benefits for both the regular feed-forward control and the advanced adaptive control systems, in which the model for biomass growth prediction is compulsory. After identification of the gray box model parameters, the options and alternatives in controllable industrial biotechnological processes are described. The main aim of this work is to achieve high reproducibility, controllability, and desired process performance. Glucose concentration measurements, which were used for the development of the model, become unnecessary for the development of the desired microbial cultivation process

    Adaptive control of the E. coli-specific growth rate in fed-batch cultivation based on oxygen uptake rate

    No full text
    In this study, an automatic control system is developed for the setpoint control of the cell biomass specific growth rate (SGR) in fed-batch cultivation processes. The feedback signal in the control system is obtained from the oxygen uptake rate (OUR) measurement-based SGR estimator. The OUR online measurements adapt the system controller to time-varying operating conditions. The developed approach of the PI controller adaptation is presented and discussed. The feasibility of the control system for tracking a desired biomass growth time profile is demonstrated with numerical simulations and fed-batch culture E.coli control experiments in a laboratory-scale bioreactor. The procedure was cross-validated with the open-loop digital twin SGR estimator, as well as with the adaptive control of the SGR, by tracking a desired setpoint time profile. The digital twin behavior statistically showed less of a bias when compared to SGR estimator performance. However, the adaptation—when using first principles—was outperformed 30 times by the model predictive controller in a robustness check scenario
    corecore