12 research outputs found

    Recovery of the autonomic nervous system following football training among division I collegiate football athletes: The influence of intensity and timeKey Points

    No full text
    The autonomic nervous system (ANS) is profoundly affected by high intensity exercise. However, evidence is less clear on ANS recovery and function following prolonged bouts of high intensity exercise, especially in non-endurance athletes. Therefore, this study aimed to investigate the relationships between duration and intensity of acute exercise training sessions and ANS recovery and function in Division I football athletes. Fifty, male football athletes were included in this study. Subjects participated in 135 days of exercise training sessions throughout the 25-week season and wore armband monitors (Warfighter Monitor, Tiger Tech Solutions) equipped with electrocardiography capabilities. Intensity was measured via heart rate (HR) during an ‘active state’, defined as HR ≥ 85 bpm. Further, data-driven intensity thresholds were used and included HR < 140 bpm, HR < 150 bpm, HR < 160 bpm, HR ≥ 140 bpm, HR ≥ 150 bpm and HR ≥ 160 bpm. Baseline HR and HR recovery were measured and represented ANS recovery and function 24h post-exercise. Linear regression models assessed the relationships between time spent at the identified intensity thresholds and ANS recovery and function 24h post-exercise. Statistical significance set at α < 0.05. Athletes participated in 128 training sessions, totaling 2735 data points analyzed. Subjects were predominantly non-Hispanic black (66.0%), aged 21.2 (±1.5) years and average body mass index of 29.2 (4.7) kg⋅(m2)−1. For baseline HR, statistically significant associations between duration and next-day ANS recovery were observed at HR < 140 bpm (β = −0.08 ± 0.02, R2 = 0.31, p < 0.001), HR above 150 and 160 bpm intensity thresholds (β = 0.25 ± 0.02, R2 = 0.69, p < 0.0000 and β = 0.59 ± 0.06, R2 = 0.71, p < 0.0000). Similar associations were observed for HR recovery: HR < 140 bpm (β = 0.15 ± 0.03, R2 = 0.43, p < 0.0000) and HR above 150 and 160 bpm (β = −0.33 ± 0.03, R2 = 0.73, p < 0.0000 and β = −0.80 ± 0.06, R2 = 0.71, p < 0.0000). The strengths of these associations increased with increasing intensity, HR ≥ 150 and 160 bpm (baseline HR: β range = 0.25 vs 0.59, R2: 0.69 vs 0.71 and HR recovery: β range = −0.33 vs −0.80, R2 = 0.73 vs 0.77). Time spent in lower intensity thresholds, elicited weaker associations with ANS recovery and function 24h post-exercise, with statistical significance observed only at HR < 140 bpm (β = −0.08 ± 0.02, R2 = 0.31, p < 0.001). The findings of this study showed that ANS recovery and function following prolonged high intensity exercise remains impaired for more than 24h. Strength and conditioning coaches should consider shorter bouts of strenuous exercise and extending recovery periods within and between exercise training sessions

    Exercise Cardiac Load and Autonomic Nervous System Recovery during In-Season Training: The Impact on Speed Deterioration in American Football Athletes

    No full text
    Fully restoring autonomic nervous system (ANS) function is paramount for peak sports performance. Training programs failing to provide sufficient recovery, especially during the in-season, may negatively affect performance. This study aimed to evaluate the influence of the physiological workload of collegiate football training on ANS recovery and function during the in-season. Football athletes recruited from a D1 college in the southeastern US were prospectively followed during their 13-week “in-season”. Athletes wore armband monitors equipped with ECG and inertial movement capabilities that measured exercise cardiac load (ECL; total heartbeats) and maximum running speed during and baseline heart rate (HR), HR variability (HRV) 24 h post-training. These metrics represented physiological load (ECL = HR·Duration), ANS function, and recovery, respectively. Linear regression models evaluated the associations between ECL, baseline HR, HRV, and maximum running speed. Athletes (n = 30) were 20.2 ± 1.5 years, mostly non-Hispanic Black (80.0%). Negative associations were observed between acute and cumulative exposures of ECLs and running speed (β = −0.11 ± 0.00, p p p = 0.001). HRV metrics were positively associated with running speed: (SDNN: β = 0.32 ± 0.09, p p < 0.02). Our study demonstrated that exposure to high ECLs, both acutely and cumulatively, may negatively influence maximum running speed, which may manifest in a deteriorating ANS. Further research should continue identifying optimal training: recovery ratios during off-, pre-, and in-season phases

    AKI Treated with Renal Replacement Therapy in Critically Ill Patients with COVID-19

    No full text
    AKI is a common sequela of coronavirus disease 2019 (COVID-19). However, few studies have focused on AKI treated with RRT (AKI-RRT). We conducted a multicenter cohort study of 3099 critically ill adults with COVID-19 admitted to intensive care units (ICUs) at 67 hospitals across the United States. We used multivariable logistic regression to identify patient-and hospital-level risk factors for AKI-RRT and to examine risk factors for 28-day mortality among such patients. A total of 637 of 3099 patients (20.6%) developed AKI-RRT within 14 days of ICU admission, 350 of whom (54.9%) died within 28 days of ICU admission. Patient-level risk factors for AKI-RRT included CKD, men, non-White race, hypertension, diabetes mellitus, higher body mass index, higher d-dimer, and greater severity of hypoxemia on ICU admission. Predictors of 28-day mortality in patients with AKI-RRT were older age, severe oliguria, and admission to a hospital with fewer ICU beds or one with greater regional density of COVID-19. At the end of a median follow-up of 17 days (range, 1-123 days), 403 of the 637 patients (63.3%) with AKI-RRT had died, 216 (33.9%) were discharged, and 18 (2.8%) remained hospitalized. Of the 216 patients discharged, 73 (33.8%) remained RRT dependent at discharge, and 39 (18.1%) remained RRT dependent 60 days after ICU admission. AKI-RRT is common among critically ill patients with COVID-19 and is associated with a hospital mortality rate of >60%. Among those who survive to discharge, one in three still depends on RRT at discharge, and one in six remains RRT dependent 60 days after ICU admission
    corecore