5 research outputs found

    Regulation of major histocompatibility complex class II gene expression in trophoblast cells

    Get PDF
    Trophoblast cells are unique because they are one of the few mammalian cell types that do not express major histocompatibility complex (MHC) class II antigens, either constitutively or after exposure to IFN-γ. The absence of MHC class II antigen expression on trophoblast cells has been postulated to be one of the essential mechanisms by which the semi-allogeneic fetus evades immune rejection reactions by the maternal immune system. Consistent with this hypothesis, trophoblast cells from the placentas of women suffering from chronic inflammation of unknown etiology and spontaneous recurrent miscarriages have been reported to aberrantly express MHC class II antigens. The lack of MHC class II antigen expression on trophoblast cells is due to silencing of expression of the class II transactivator (CIITA), a transacting factor that is essential for constitutive and IFN-γ-inducible MHC class II gene transcription. Transfection of trophoblast cells with CIITA expression vectors activates both MHC class II and class Ia antigen expression, which confers on trophoblast cells both the ability to activate helper T cells, and sensitivity to lysis by cytotoxic T lymphocytes. Collectively, these studies strongly suggest that stringent silencing of CIITA (and therefore MHC class II) gene expression in trophoblast cells is critical for the prevention of immune rejection responses against the fetus by the maternal immune system. The focus of this review is to summarize studies examining the novel mechanisms by which CIITA is silenced in trophoblast cells. The elucidation of the silencing of CIITA in trophoblast cells may shed light on how the semi-allogeneic fetus evades immune rejection by the maternal immune system during pregnancy

    Dampening of IFN-γ-Inducible Gene Expression in Human Choriocarcinoma Cells Is Due to Phosphatase-Mediated Inhibition of the JAK/STAT-1 Pathway

    No full text
    International audienceTrophoblast cells (TBCs) form the blastocyst-derived component of the placenta and play essential roles in fetal maintenance. The proinflammatory cytokine IFN-gamma plays a central role in activating cellular immunity, controlling cell proliferation, and inducing apoptosis. IFN-gamma is secreted by uterine NK cells in the placenta during pregnancy and in mice is required for proper formation of the decidual layer and remodeling of the uterine vasculature. Despite the presence of IFN-gamma in the placenta, TBCs do not express either MHC class Ia or class II Ags, and are resistant to IFN-gamma-mediated apoptosis. In this study, we demonstrate that IFN-gamma-induced expression of multiple genes is significantly reduced in human trophoblast-derived choriocarcinoma cells relative to HeLa epithelial or fibroblast cells. These results prompted us to investigate the integrity of the JAK/STAT-1 pathway in these cells. Choriocarcinoma cells and HeLa cells express comparable levels of the IFN-gamma receptor. However, tyrosine phosphorylation of JAK-2 is compromised in IFN-gamma-treated choriocarcinoma cells. Moreover, phosphorylation of STAT-1 at tyrosine 701 is substantially reduced in both IFN-gamma-treated human choriocarcinoma and primary TBCs compared with HeLa cells or primary foreskin fibroblasts. A corresponding reduction of both IFN regulatory factor 1 mRNA and protein expression was observed in IFN-gamma-treated TBCs. Treatment of choriocarcinoma cells with the tyrosine phosphatase inhibitor pervanadate significantly enhanced IFN-gamma-inducible JAK and STAT-1 tyrosine phosphorylation and select IFN-gamma-inducible gene expression. We propose that phosphatase-mediated suppression of IFN-gamma signaling in TBCs contributes to fetal maintenance by inhibiting expression of genes that could be detrimental to successful pregnancy
    corecore