16 research outputs found

    Colorectal cancer in patients of advanced age is associated with increased incidence of BRAF p.V600E mutation and mismatch repair deficiency

    Get PDF
    IntroductionThe highest incidence of colorectal cancer (CRC) is in patients diagnosed at 80 years or older highlighting a need for understanding the clinical and molecular features of these tumors. Methods. In this retrospective cohort study, 544 CRCs underwent next generation sequencing and mismatch repair (MMR) evaluation. Molecular and clinical features were compared between 251 patients with traditional-onset CRC (50-69 years at diagnosis) and 60 with late-onset CRC (>80 years at diagnosis).ResultsLate-onset CRC showed a significantly higher rate of right-sided tumors (82% vs 35%), MMR deficiency (35% vs. 8%) and BRAF p.V600E mutations (35% vs. 8%) and a significantly lower rate of stage IV disease (15% vs 28%) and APC mutations (52% vs. 78%). Association of these features with advanced age was supported by stratifying patients into 6 age groups (<40, 40-49, 50-59, 60-69, 70-79 and >80 years). However, the age-related rise in MMR deficient (dMMR) CRC was only seen in the female patients with an incidence of 48% (vs. 10% in the male patient) in the >80y group. In addition, BRAF p.V600E was significantly enriched in MMR deficient CRC of advanced age (67% in late-onset CRC). Categorizing CRC by mutational profiling, late-onset CRC revealed a significantly higher rate of dMMR/BRAF+APC- (18% vs. 2.0%), dMMR/BRAF-APC- (8.3% vs. 1.2%) and MMR proficient (pMMR)/BRAF+APC- (12% vs. 4.0%) as compared to traditional-onset CRC.DiscussionIn summary, there was a higher rate of dMMR and BRAF p.V600E in late-onset CRC, independently or in combination. The higher incidence of dMMR in late-onset CRC in females is most likely predominantly driven by BRAF p.V600E induced hypermethylation. Prospective studies with treatment plans designed specifically for these older patients are warranted to improve their outcomes

    Diagnosis and monitoring of virus-associated cancer using cell-free DNA

    No full text
    Viral-associated cancers are a distinct group of malignancies with a unique pathogenesis and epidemiology. Liquid biopsy is a minimally invasive way to identify tumor-associated abnormalities in blood derivatives, such as plasma, to guide the diagnosis, prognosis, and treatment of patients with cancer. Liquid biopsy encompasses a multitude of circulating analytes with the most extensively studied being cell-free DNA (cfDNA). In recent decades, substantial advances have been made toward the study of circulating tumor DNA in nonviral-associated cancers. Many of these observations have been translated to the clinic to improve the outcomes of patients with cancer. The study of cfDNA in viral-associated cancers is rapidly evolving and reveals tremendous potential for clinical applications. This review provides an overview of the pathogenesis of viral-associated malignancies, the current state of cfDNA analysis in oncology, the current state of cfDNA analysis in viral-associated cancers, and perspectives for the future of liquid biopsies in viral-associated cancers

    Lack of TERT Promoter Mutations in Human B-Cell Non-Hodgkin Lymphoma

    No full text
    Non-Hodgkin lymphomas (NHL) are a heterogeneous group of immune cell neoplasms that comprise molecularly distinct lymphoma subtypes. Recent work has identified high frequency promoter point mutations in the telomerase reverse transcriptase (TERT) gene of different cancer types, including melanoma, glioma, liver and bladder cancer. TERT promoter mutations appear to correlate with increased TERT expression and telomerase activity in these cancers. In contrast, breast, pancreatic, and prostate cancer rarely demonstrate mutations in this region of the gene. TERT promoter mutation prevalence in NHL has not been thoroughly tested thus far. We screened 105 B-cell lymphoid malignancies encompassing nine NHL subtypes and acute lymphoblastic leukemia, for TERT promoter mutations. Our results suggest that TERT promoter mutations are rare or absent in most NHL. Thus, the classical TERT promoter mutations may not play a major oncogenic role in TERT expression and telomerase activation in NHL

    CloneRetriever: An Automated Algorithm to Identify Clonal B and T Cell Gene Rearrangements by Next-Generation Sequencing for the Diagnosis of Lymphoid Malignancies.

    No full text
    BackgroundClonal immunoglobulin and T-cell receptor rearrangements serve as tumor-specific markers that have become mainstays of the diagnosis and monitoring of lymphoid malignancy. Next-generation sequencing (NGS) techniques targeting these loci have been successfully applied to lymphoblastic leukemia and multiple myeloma for minimal residual disease detection. However, adoption of NGS for primary diagnosis remains limited.MethodsWe addressed the bioinformatics challenges associated with immune cell sequencing and clone detection by designing a novel web tool, CloneRetriever (CR), which uses machine-learning principles to generate clone classification schemes that are customizable, and can be applied to large datasets. CR has 2 applications-a "validation" mode to derive a clonality classifier, and a "live" mode to screen for clones by applying a validated and/or customized classifier. In this study, CR-generated multiple classifiers using 2 datasets comprising 106 annotated patient samples. A custom classifier was then applied to 36 unannotated samples.ResultsThe optimal classifier for clonality required clonal dominance ≥4.5× above background, read representation ≥8% of all reads, and technical replicate agreement. Depending on the dataset and analysis step, the optimal algorithm yielded sensitivities of 81%-90%, specificities of 97%-100%, areas under the curve of 91%-94%, positive predictive values of 92-100%, and negative predictive values of 88%-98%. Customization of the algorithms yielded 95%-100% concordance with gold-standard clonality determination, including rescue of indeterminate samples. Application to a set of unknowns showed concordance rates of 83%-96%.ConclusionsCR is an out-of-the-box ready and user-friendly software designed to identify clonal rearrangements in large NGS datasets for the diagnosis of lymphoid malignancies
    corecore