217 research outputs found
Bounded-Distortion Metric Learning
Metric learning aims to embed one metric space into another to benefit tasks
like classification and clustering. Although a greatly distorted metric space
has a high degree of freedom to fit training data, it is prone to overfitting
and numerical inaccuracy. This paper presents {\it bounded-distortion metric
learning} (BDML), a new metric learning framework which amounts to finding an
optimal Mahalanobis metric space with a bounded-distortion constraint. An
efficient solver based on the multiplicative weights update method is proposed.
Moreover, we generalize BDML to pseudo-metric learning and devise the
semidefinite relaxation and a randomized algorithm to approximately solve it.
We further provide theoretical analysis to show that distortion is a key
ingredient for stability and generalization ability of our BDML algorithm.
Extensive experiments on several benchmark datasets yield promising results
VLBI Technology Development at SHAO
VLBI technology development made significant progress at SHAO in the last few years. The development status of the Chinese DBBC, the software and FPGA-based correlators, and the new VLBI antenna, as well as VLBI applications are summarized in this paper
Loss of ARHGEF6 Causes Hair Cell Stereocilia Deficits and Hearing Loss in Mice
ARHGEF6 belongs to the family of guanine nucleotide exchange factors (GEFs) for Rho GTPases, and it specifically activates Rho GTPases CDC42 and RAC1. Arhgef6 is the X-linked intellectual disability gene also known as XLID46, and clinical features of patients carrying Arhgef6 mutations include intellectual disability and, in some cases, sensorineural hearing loss. Rho GTPases act as molecular switches in many cellular processes. Their activities are regulated by binding or hydrolysis of GTP, which is facilitated by GEFs and GTPase-activating proteins, respectively. RAC1 and CDC42 have been shown to play important roles in hair cell (HC) stereocilia development. However, the role of ARHGEF6 in inner ear development and hearing function has not yet been investigated. Here, we found that ARHGEF6 is expressed in mouse cochlear HCs, including the HC stereocilia. We established Arhgef6 knockdown mice using the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR-Cas9) genome editing technique. We showed that ARHGEF6 was indispensable for the maintenance of outer hair cell (OHC) stereocilia, and loss of ARHGEF6 in mice caused HC stereocilia deficits that eventually led to progressive HC loss and hearing loss. However, the loss of ARHGEF6 did not affect the synapse density and did not affect the mechanoelectrical transduction currents in OHCs at postnatal day 3. At the molecular level, the levels of active CDC42 and RAC1 were dramatically decreased in the Arhgef6 knockdown mice, suggesting that ARHGEF6 regulates stereocilia maintenance through RAC1/CDC42
Origami-inspired soft twisting actuator
Soft actuators have shown great advantages in compliance and morphology
matched for manipulation of delicate objects and inspection in a confined
space. There is an unmet need for a soft actuator that can provide torsional
motion to e.g. enlarge working space and increase degrees of freedom. Towards
this goal, we present origami-inspired soft pneumatic actuators (OSPAs) made
from silicone. The prototype can output a rotation of more than one revolution
(up to 435{\deg}), more significant than its counterparts. Its rotation ratio
(=rotation angle/ aspect ratio) is more than 136{\deg}, about twice the largest
one in other literature. We describe the design and fabrication method, build
the analytical model and simulation model, and analyze and optimize the
parameters. Finally, we demonstrate the potentially extensive utility of the
OSPAs through their integration into a gripper capable of simultaneously
grasping and lifting fragile or flat objects, a versatile robot arm capable of
picking and placing items at the right angle with the twisting actuators, and a
soft snake robot capable of changing attitude and directions by torsion of the
twisting actuators.Comment: 9 figures. Soft Robotics (2022
Optimization of a Fuel Assembly for Supercritical Water-Cooled Reactor CSR1000
As one of the Generation IV nuclear reactors, the SCWR (supercritical water-cooled reactor) has high economy and safety margin, good mechanical properties for its high thermal efficiency, and simplified structure design. As the key component of nuclear reactor, the fuel assembly has always been the main issue for the design of the SCWR. The design of the fuel assembly for CSR1000 proposed by the Nuclear Power Institute of China (NPIC) has been optimized and presented in this study, which is composed of four subassemblies welded by four filler strips and guide thimbles arranged close together in the cross-shaped passage. Aiming at improving the hydraulic buffer performance of the cruciform control rod, the scram time and terminal velocity of control rod assembly were calculated to assess the scram performance based on the computational fluid dynamics and dynamic mesh method, and the mechanical property and neutronic performance of assemblies were also investigated. It has been demonstrated that the optimized fuel assembly had good feasibility and performance, which was a promising design for CSR1000
The Progress of CDAS
The Chinese Data Acquisition System (CDAS) based on FPGA techniques has been developed in China for the purpose of replacing the traditional analog baseband converter. CDAS is a high speed data acquisition and processing system with 1024 Msps sample rate for 512M bandwidth input and up to 16 channels (both USB and LSB) output with VSI interface compatible. The instrument is a flexible environment which can be updated easily. In this paper, the construction, the performance, the experiment results, and the future plans of CDAS will be reported
- …