421 research outputs found

    Superconductivity induced by Ni doping in BaFe2_2As2_2

    Full text link
    A series of 122 phase BaFe2x_{2-x}Nix_xAs2_2 (xx = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature TconT_c^{on} reaches a maximum of 20.5 K at xx = 0.096, and it drops to below 4 K as xx \geq 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.Comment: 7 pages, 5 figures, revised version, added EDX result, accepted for special issue of NJ

    Superconductivity induced by cobalt doping in iron-based oxyarsenides

    Get PDF
    Chemical doping has recently become a very important strategy to induce superconductivity especially in complex compounds. Distinguished examples include Ba-doped La2_2CuO4_4 (the first high temperature superconductor), K-doped BaBiO3_3, K-doped C60_{60} and Nax_{x}CoO2y_{2}\cdot yH2_{2}O. The most recent example is F-doped LaFeAsO, which leads to a new class of high temperature superconductors. One notes that all the above dopants are non-magnetic, because magnetic atoms generally break superconducting Cooper pairs. In addition, the doping site was out of the (super)conducting structural unit (layer or framework). Here we report that superconductivity was realized by doping magnetic element cobalt into the (super)conducting-active Fe2_2As2_2 layers in LaFe1x_{1-x}Cox_{x}AsO. At surprisingly small Co-doping level of xx=0.025, the antiferromagnetic spin-density-wave transition in the parent compound is completely suppressed, and superconductivity with TcT_c\sim 10 K emerges. With increasing Co content, TcT_c shows a maximum of 13 K at x0.075x\sim 0.075, and then drops to below 2 K at xx=0.15. This result suggests essential differences between previous cuprate superconductor and the present iron-based arsenide one.Comment: 4 pages, 4 figure

    Metamagnetic transition in EuFe2_2As2_2 single crystals

    Get PDF
    We report the measurements of anisotropic magnetization and magnetoresistance on single crystals of EuFe2_2As2_2, a parent compound of ferro-arsenide high-temperature superconductor. Apart from the antiferromagnetic (AFM) spin-density-wave transition at 186 K associated with Fe moments, the compound undergoes another magnetic phase transition at 19 K due to AFM ordering of Eu2+^{2+} spins (J=S=7/2J=S=7/2). The latter AFM state exhibits metamagnetic transition under magnetic fields. Upon applying magnetic field with HcH\parallel c at 2 K, the magnetization increases linearly to 7.0 μB\mu_{B}/f.u. at μ0H\mu_{0}H=1.7 T, then keeps at this value of saturated Eu2+^{2+} moments under higher fields. In the case of HabH\parallel ab, the magnetization increases step-like to 6.6 μB\mu_{B}/f.u. with small magnetic hysteresis. A metamagnetic phase was identified with the saturated moments of 4.4 μB\mu_{B}/f.u. The metamagnetic transition accompanies with negative in-plane magnetoresistance, reflecting the influence of Eu2+^{2+} moments ordering on the electrical conduction of FeAs layers. The results were explained in terms of spin-reorientation and spin-reversal based on an AA-type AFM structure for Eu2+^{2+} spins. The magnetic phase diagram has been established.Comment: 10 pages, 8 figures. accepted for publication in New Journal of Physics as a special issue articl

    Amplitude Analysis of the Decays D0π+ππ+πD^0\to\pi^+\pi^-\pi^+\pi^- and π+ππ0π0\pi^+\pi^-\pi^0\pi^0

    Full text link
    Using e+ee^+e^- annihilation data corresponding to an integrated luminosity of 2.93 fb1\rm fb^{-1} taken at the center-of-mass energy s=3.773\sqrt{s}=3.773~GeV with the BESIII detector, a joint amplitude analysis is performed on the decays D0π+ππ+πD^0\to\pi^+\pi^-\pi^+\pi^- and D0π+ππ0π0D^0\to\pi^+\pi^-\pi^0\pi^0(non-η\eta). The fit fractions of individual components are obtained, and large interferences among the dominant components of D0a1(1260)πD^{0}\to a_{1}(1260)\pi, D0π(1300)πD^{0}\to\pi(1300)\pi, D0ρ(770)ρ(770)D^{0}\to\rho(770)\rho(770) and D02(ππ)SD^{0}\to2(\pi\pi)_{S} are found in both channels. With the obtained amplitude model, the CPCP-even fractions of D0π+ππ+πD^0\to \pi^+\pi^-\pi^+\pi^- and D0π+ππ0π0D^0\to\pi^+\pi^-\pi^0\pi^0(non-η\eta) are determined to be (75.2±1.1stat.±1.5syst.)%(75.2\pm1.1_{\rm stat.}\pm1.5_{\rm syst.})\% and (68.9±1.5stat.±2.4syst.)%(68.9\pm1.5_{\rm stat.}\pm 2.4_{\rm syst.})\%, respectively. The branching fractions of D0π+ππ+πD^0\to \pi^+\pi^-\pi^+\pi^- and D0π+ππ0π0D^0\to\pi^+\pi^-\pi^0\pi^0(non-η\eta) are measured to be (0.688±0.010stat.±0.010syst.)%(0.688\pm0.010_{\rm stat.}\pm 0.010_{\rm syst.})\% and (0.951±0.025stat.±0.021syst.)%(0.951\pm0.025_{\rm stat.}\pm 0.021_{\rm syst.})\%, respectively. The amplitude analysis provides an important model for binning strategy in the measurements of the strong phase parameters of D04πD^0 \to 4\pi when used to determine the CKM angle γ(ϕ3)\gamma (\phi_{3}) via the BDKB^{-}\to D K^{-} decay

    Measurements of the branching fractions of the inclusive decays D0(D+)→π+π+π−X

    Get PDF
    Using eþe− annihilation data corresponding to an integrated luminosity of 2.93 fb−1 taken at a center-of mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the branching fractions of the inclusive decays D0 → πþπþπ−X and Dþ → πþπþπ−X, where pions from K0 S decays have been excluded from the πþπþπ− system and X denotes any possible particle combination. The branching fractions of D0ðDþÞ → πþπþπ−X are determined to be BðD0 → πþπþπ−XÞ¼ð17.60 0.11 0.22Þ% and BðDþ → πþπþπ−XÞ¼ð15.25 0.09 0.18Þ%, where the first uncertainties are statistical and the second systematic

    Measurement of the Electromagnetic Transition Form-factors in the decays ηπ+πl+l\eta'\rightarrow\pi^+\pi^-l^+l^-

    Full text link
    With a sample of (10087±44)×106(10087\pm44)\times10^{6} J/ψJ/\psi events accumulated with the BESIII detector, we analyze the decays ηπ+πl+l(l=e,\eta'\rightarrow\pi^+\pi^-l^+l^-(l=e, μ)\mu) via the process J/ψγηJ/\psi\rightarrow\gamma\eta'. The branching fractions are measured to be B(ηπ+πe+e)=(2.45±0.02(stat.)±0.08(syst.))×103\mathcal{B}(\eta'\rightarrow\pi^+\pi^-e^+e^-)=(2.45\pm0.02(\rm{stat.})\pm0.08(\rm{syst.})) \times10^{-3} and B(ηπ+πμ+μ)=(2.16±0.12(stat.)±0.06(syst.))×105\mathcal{B}(\eta'\rightarrow\pi^+\pi^-\mu^+\mu^-)=(2.16\pm0.12(\rm{stat.})\pm0.06(\rm{syst.}))\times10^{-5}, and the ratio is B(ηπ+πe+e)B(ηπ+πμ+μ)=113.4±0.9(stat.)±3.7(syst.)\frac{\mathcal{B}(\eta'\rightarrow\pi^{+}\pi^{-}e^{+}e^{-})}{\mathcal{B}(\eta'\rightarrow\pi^{+}\pi^{-}\mu^{+}\mu^{-})} = 113.4\pm0.9(\rm{stat.})\pm3.7(\rm{syst.}). In addition, by combining the ηπ+πe+e\eta'\rightarrow\pi^+\pi^-e^+e^- and ηπ+πμ+μ\eta'\rightarrow\pi^+\pi^-\mu^+\mu^- decays, the slope parameter of the electromagnetic transition form factor is measured to be bη=1.30±0.19 (GeV/c2)2b_{\eta'}=1.30\pm0.19\ (\mathrm{GeV}/c^{2})^{-2}, which is consistent with previous measurements from BESIII and theoretical predictions from the VMD model. The asymmetry in the angle between the π+π\pi^+\pi^- and l+ll^+l^- decay planes, which has the potential to reveal the CPCP-violation originating from an unconventional electric dipole transition, is also investigated. The asymmetry parameters are determined to be ACP(ηπ+πe+e)=(0.21±0.73(stat.)±0.01(syst.))%\mathcal{A}_{CP}(\eta'\rightarrow\pi^+\pi^-e^+e^-)=(-0.21\pm0.73(\rm{stat.})\pm0.01(\rm{syst.}))\% and ACP(ηπ+πμ+μ)=(0.62±4.71(stat.)±0.08(syst.))%\mathcal{A}_{CP}(\eta'\rightarrow\pi^+\pi^-\mu^+\mu^-)=(0.62\pm4.71(\rm{stat.})\pm0.08(\rm{syst.}))\%, implying that no evidence of CPCP-violation is observed at the present statistics. Finally, an axion-like particle is searched for via the decay ηπ+πa,ae+e\eta'\rightarrow\pi^+\pi^-a, a\rightarrow e^+e^-, and upper limits of the branching fractions are presented for the mass assumptions of the axion-like particle in the range of 0500 MeV/c20-500\ \mathrm{MeV}/c^{2}

    Search for an axion-like particle in J/ψJ/\psi radiative decays

    Full text link
    We search for an axion-like particle (ALP) aa through the process ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^+\pi^-J/\psi, J/ψγaJ/\psi\rightarrow\gamma a, aγγa\rightarrow\gamma\gamma in a data sample with (2708.1±14.5)×106(2708.1\pm14.5)\times10^6 ψ(3686)\psi(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψγaJ/\psi\rightarrow\gamma a and the ALP-photon coupling constant gaγγg_{a\gamma\gamma} are set at the 95\% confidence level in the mass range of 0.165\leq m_a\leq2.84\,\mbox{GeV}/c^2. The limits on B(J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a) range from 8.3×1088.3\times10^{-8} to 1.8×1061.8\times10^{-6} over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165\leq m_a\leq1.468\,\mbox{GeV}/c^2.Comment: 10 pages, 5 figure

    First Measurement of the Decay Asymmetry in the pure W-boson-exchange Decay Λc+Ξ0K+\Lambda_{c}^{+}\to\Xi^{0}K^{+}

    Full text link
    Based on 4.4 fb14.4~\text{fb}^{-1} of e+ee^{+}e^{-} annihilation data collected at the center-of-mass energies between 4.604.60 and 4.70 GeV4.70~\text{GeV} with the BESIII detector at the BEPCII collider, the pure \textit{W}-boson-exchange decay Λc+Ξ0K+\Lambda_{c}^{+}\to\Xi^{0}K^{+} is studied with a full angular analysis. The corresponding decay asymmetry is measured for the first time to be αΞ0K+=0.01±0.16(stat.)±0.03(syst.)\alpha_{\Xi^{0}K^{+}}=0.01\pm0.16({\rm stat.})\pm0.03({\rm syst.}). This result reflects the non-interference effect between the SS- and PP-wave amplitudes. The phase shift between SS- and PP-wave amplitudes has two solutions, which are δpδs=1.55±0.25(stat.)±0.05(syst.) rad\delta_{p}-\delta_{s}=-1.55\pm0.25({\rm stat.})\pm0.05({\rm syst.})~\text{rad} or 1.59±0.25(stat.)±0.05(syst.) rad1.59\pm0.25({\rm stat.})\pm0.05({\rm syst.})~\text{rad}

    Measurements of Born Cross Sections for e+eΛc+Λˉc(2595)+c.c.e^+e^-\to \Lambda_{c}^+ \bar{\Lambda}_{c}(2595)^- + {\rm c.c.} and e+eΛc+Λˉc(2625)+c.c.e^+e^-\to \Lambda_{c}^+ \bar{\Lambda}_{c}(2625)^- + {\rm c.c.} at s=\sqrt{s}=4918.0 and 4950.9 MeV

    Full text link
    Using e+ee^+e^- collision data collected with the BESIII detector operating at the BEPCII collider, the Born cross sections of e+eΛc+Λˉc(2595)+c.c.e^+e^-\to \Lambda_{c}^+ \bar{\Lambda}_{c}(2595)^- + \rm{c.c.} and e+eΛc+Λˉc(2625)+c.c.e^+e^-\to \Lambda_{c}^+ \bar{\Lambda}_{c}(2625)^- + \rm{c.c.} are measured for the first time at center-of-mass energies of s=4918.0\sqrt{s}=4918.0 and 4950.9 MeV. Non-zero cross sections are observed very close to the production threshold. The measured Born cross sections of e+eΛc+Λˉc(2625)+c.c.e^+e^-\to \Lambda_{c}^+ \bar{\Lambda}_{c}(2625)^- + \rm{c.c.} are about 232\sim3 times greater than those of e+eΛc+Λˉc(2595)+c.c.e^+e^-\to \Lambda_{c}^+ \bar{\Lambda}_{c}(2595)^- + \rm{c.c.}, thereby indicating that the exotic structure potentially exists in the excited charmed baryons. The Born cross sections are 15.6±3.1±0.915.6\pm3.1\pm0.9 pb and 29.4±3.7±2.729.4\pm3.7\pm2.7 pb for e+eΛc+Λˉc(2595)+c.c.e^+e^-\to \Lambda_{c}^+ \bar{\Lambda}_{c}(2595)^- + \rm{c.c.}, and are 43.4±4.0±4.143.4\pm4.0\pm4.1 pb and 76.8±6.5±4.276.8\pm6.5\pm4.2 pb for e+eΛc+Λˉc(2625)+c.c.e^+e^-\to \Lambda_{c}^+ \bar{\Lambda}_{c}(2625)^- +\rm{c.c.} at s=4918.0\sqrt s=4918.0 and 4950.9 MeV, respectively. Based on the polar angle distributions of the Λˉc(2625)\bar{\Lambda}_{c}(2625)^- and Λc(2625)+\Lambda_{c}(2625)^+, the form-factor ratios GE2+3GM2/GC\sqrt{|G_{E}|^2 + 3|G_{M}|^2}/|G_{C}| are determined for e+eΛc+Λˉc(2625)+c.c.e^+e^-\to \Lambda_{c}^+ \bar{\Lambda}_{c}(2625)^- + \rm{c.c.} for the first time, which are 5.95±4.07±0.155.95\pm4.07\pm0.15 and 0.94±0.32±0.020.94\pm0.32\pm0.02 at s=4918.0\sqrt s=4918.0 and 4950.9 MeV, respectively. All of these first uncertainties are statistical and second systematic.Comment: 10 pages, 6 figure

    Search for an invisible muon philic scalar X0X_{0} or vector X1X_{1} via J/ψμ+μ+invisibleJ/\psi\to\mu^+\mu^-+\rm{invisible} decay at BESIII

    Full text link
    A light scalar X0X_{0} or vector X1X_{1} particles have been introduced as a possible explanation for the (g2)μ(g-2)_{\mu} anomaly and dark matter phenomena. Using (8.998±0.039)×109(8.998\pm 0.039)\times10^9 \jpsi events collected by the BESIII detector, we search for a light muon philic scalar X0X_{0} or vector X1X_{1} in the processes J/ψμ+μX0,1J/\psi\to\mu^+\mu^- X_{0,1} with X0,1X_{0,1} invisible decays. No obvious signal is found, and the upper limits on the coupling g0,1g_{0,1}' between the muon and the X0,1X_{0,1} particles are set to be between 1.1×1031.1\times10^{-3} and 1.0×1021.0\times10^{-2} for the X0,1X_{0,1} mass in the range of 1<M(X0,1)<10001<M(X_{0,1})<1000~MeV/c2/c^2 at 90%\% confidence level.Comment: 9 pages 7 figure
    corecore