28,612 research outputs found
Microscopic interface phonon modes in structures of GaAs quantum dots embedded in AlAs shells
By means of a microscopic valence force field model, a series of novel
microscopic interface phonon modes are identified in shell quantum dots(SQDs)
composed of a GaAs quantum dot of nanoscale embedded in an AlAs shell of a few
atomic layers in thickness. In SQDs with such thin shells, the basic principle
of the continuum dielectric model and the macroscopic dielectric function are
not valid any more. The frequencies of these microscopic interface modes lie
inside the gap between the bulk GaAs band and the bulk AlAs band, contrary to
the macroscopic interface phonon modes. The average vibrational energies and
amplitudes of each atomic shell show peaks at the interface between GaAs and
AlAs. These peaks decay fast as their penetrating depths from the interface
increase.Comment: 13 pages, 4 figure
Clock synchronization using maximal multipartite entanglement
We propose a multi party quantum clock synchronization protocol that makes
optimal use of the maximal multipartite entanglement of GHZ-type states. To
realize the protocol, different versions of maximally entangled eigenstates of
collective energy are generated by local transformations that distinguish
between different groupings of the parties. The maximal sensitivity of the
entangled states to time differences between the local clocks can then be
accessed if all parties share the results of their local time dependent
measurements. The efficiency of the protocol is evaluated in terms of the
statistical errors in the estimation of time differences and the performance of
the protocol is compared to alternative protocols previously proposed
The branch processes of vortex filaments and Hopf Invariant Constraint on Scroll Wave
In this paper, by making use of Duan's topological current theory, the
evolution of the vortex filaments in excitable media is discussed in detail.
The vortex filaments are found generating or annihilating at the limit points
and encountering, splitting, or merging at the bifurcation points of a complex
function . It is also shown that the Hopf invariant of knotted
scroll wave filaments is preserved in the branch processes (splitting, merging,
or encountering) during the evolution of these knotted scroll wave filaments.
Furthermore, it also revealed that the "exclusion principle" in some chemical
media is just the special case of the Hopf invariant constraint, and during the
branch processes the "exclusion principle" is also protected by topology.Comment: 9 pages, 5 figure
Surface phase separation in nanosized charge-ordered manganites
Recent experiments showed that the robust charge-ordering in manganites can
be weakened by reducing the grain size down to nanoscale. Weak ferromagnetism
was evidenced in both nanoparticles and nanowires of charge-ordered manganites.
To explain these observations, a phenomenological model based on surface phase
separation is proposed. The relaxation of superexchange interaction on the
surface layer allows formation of a ferromagnetic shell, whose thickness
increases with decreasing grain size. Possible exchange bias and softening of
the ferromagnetic transition in nanosized charge-ordered manganites are
predicted.Comment: 4 pages, 3 figure
Recurrence interval analysis of high-frequency financial returns and its application to risk estimation
We investigate the probability distributions of the recurrence intervals
between consecutive 1-min returns above a positive threshold or
below a negative threshold of two indices and 20 individual stocks in
China's stock market. The distributions of recurrence intervals for positive
and negative thresholds are symmetric, and display power-law tails tested by
three goodness-of-fit measures including the Kolmogorov-Smirnov (KS) statistic,
the weighted KS statistic and the Cram\'er-von Mises criterion. Both long-term
and shot-term memory effects are observed in the recurrence intervals for
positive and negative thresholds . We further apply the recurrence interval
analysis to the risk estimation for the Chinese stock markets based on the
probability , Value-at-Risk (VaR) analysis and VaR analysis
conditioned on preceding recurrence intervals.Comment: 17 pages, 10 figures, 1 tabl
Plasmon assisted transmission of high dimensional orbital angular momentum entangled state
We present an experimental evidence that high dimensional orbital angular
momentum entanglement of a pair of photons can be survived after a
photon-plasmon-photon conversion. The information of spatial modes can be
coherently transmitted by surface plasmons. This experiment primarily studies
the high dimensional entangled systems based on surface plasmon with
subwavelength structures. It maybe useful in the investigation of spatial mode
properties of surface plasmon assisted transmission through subwavelength hole
arrays.Comment: 7 pages,6 figure
Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models
Possibility of unconventional pairing due to Coulomb interaction in
iron-pnictide superconductors is studied by applying a perturbative approach to
realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is
solved by expanding the effective pairing interaction perturbatively up to
third order in the on-site Coulomb integrals. The numerical results for the
5-band model suggest that the eigenvalues of the Eliashberg equation are
sufficiently large to explain the actual high Tc for realistic values of
Coulomb interaction and the most probable pairing state is spin-singlet s-wave
without any nodes just on the Fermi surfaces, although the superconducting
order parameter changes its sign between the small Fermi pockets. On the other
hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on
Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008
- …