4,597 research outputs found

    Motion of the hydrogen bond proton in cytosine and the transition between its normal and imino states

    Full text link
    The potential energy surface of the H13 proton in base cytosine of the DNA molecules is calculated {\it ab initio} at the Gaussian98 MP2/6-311G(d,p) level. Two potential wells are found. One corresponds to the normal cytosine, while the other corresponds to its imino tautomer. The bindings of the proton in these wells are stable enough against the thermo-disturbance. The motions of the proton in these wells are oscillations around the nearest nitrogen atom like the pendula, and may move far away from the nitrogen atom to form the hydrogen bond with other bases. The estimated tunneling probability of the H13 proton from one well to another well shows that the life time of the proton staying in one of these wells is about 6×102\times10^2 yr. It is too long to let tautomers of cytosine be in thermodynamical equilibrium in a room temperature gas phase experiment. The biological significance of these result is discussed.Comment: 4 pages, 4 figures, replace the bmp files in figures 1 and 2 by corresponding eps files in tex

    Enhanced Low-resolution LiDAR-Camera Calibration Via Depth Interpolation and Supervised Contrastive Learning

    Full text link
    Motivated by the increasing application of low-resolution LiDAR recently, we target the problem of low-resolution LiDAR-camera calibration in this work. The main challenges are two-fold: sparsity and noise in point clouds. To address the problem, we propose to apply depth interpolation to increase the point density and supervised contrastive learning to learn noise-resistant features. The experiments on RELLIS-3D demonstrate that our approach achieves an average mean absolute rotation/translation errors of 0.15cm/0.33\textdegree on 32-channel LiDAR point cloud data, which significantly outperforms all reference methods

    Physics-informed Deep Super-resolution for Spatiotemporal Data

    Full text link
    High-fidelity simulation of complex physical systems is exorbitantly expensive and inaccessible across spatiotemporal scales. Recently, there has been an increasing interest in leveraging deep learning to augment scientific data based on the coarse-grained simulations, which is of cheap computational expense and retains satisfactory solution accuracy. However, the major existing work focuses on data-driven approaches which rely on rich training datasets and lack sufficient physical constraints. To this end, we propose a novel and efficient spatiotemporal super-resolution framework via physics-informed learning, inspired by the independence between temporal and spatial derivatives in partial differential equations (PDEs). The general principle is to leverage the temporal interpolation for flow estimation, and then introduce convolutional-recurrent neural networks for learning temporal refinement. Furthermore, we employ the stacked residual blocks with wide activation and sub-pixel layers with pixelshuffle for spatial reconstruction, where feature extraction is conducted in a low-resolution latent space. Moreover, we consider hard imposition of boundary conditions in the network to improve reconstruction accuracy. Results demonstrate the superior effectiveness and efficiency of the proposed method compared with baseline algorithms through extensive numerical experiments

    Xar-Trek: Run-Time Execution Migration among FPGAs and Heterogeneous-ISA CPUs

    Get PDF
    Datacenter servers are increasingly heterogeneous: from x86 host CPUs, to ARM or RISC-V CPUs in NICs/SSDs, to FPGAs. Previous works have demonstrated that migrating application execution at run-time across heterogeneous-ISA CPUs can yield significant performance and energy gains, with relatively little programmer effort. However, FPGAs have often been overlooked in that context: hardware acceleration using FPGAs involves statically implementing select application functions, which prohibits dynamic and transparent migration. We present Xar-Trek, a new compiler and run-time software framework that overcomes this limitation. Xar-Trek compiles an application for several CPU ISAs and select application functions for acceleration on an FPGA, allowing execution migration between heterogeneous-ISA CPUs and FPGAs at run-time. Xar-Trek's run-time monitors server workloads and migrates application functions to an FPGA or to heterogeneous-ISA CPUs based on a scheduling policy. We develop a heuristic policy that uses application workload profiles to make scheduling decisions. Our evaluations conducted on a system with x86-64 server CPUs, ARM64 server CPUs, and an Alveo accelerator card reveal 88%-1% performance gains over no-migration baselines

    A newly synthetic chromium complex – chromium(phenylalanine)3 improves insulin responsiveness and reduces whole body glucose tolerance

    Get PDF
    AbstractLow-molecular-weight organic chromium complexes such as chromium picolinate are often used as dietary supplements to improve insulin sensitivity and to correct dyslipidemia. However, toxicity associated with such chromium compounds has compromised their therapeutic value. The aim of this study was to evaluate the impact of a newly synthesized complex of chromium with phenylalanine, Cr(pa)3 on insulin-signaling and glucose tolerance. Cr(pa)3 was synthesized by chelating chromium(III) with d-phenylalanine ligand in aqueous solution. In mouse 3T3-adipocytes, Cr(pa)3 augmented insulin-stimulated glucose-uptake as assessed by a radioactive-glucose uptake assay. At the molecular level, Cr(pa)3 enhanced insulin-stimulated phosphorylation of Akt in a time- and concentration-dependent manner without altering the phosphorylation of insulin receptor. Oral treatment with Cr(pa)3 (150μg/kg/d, for six weeks) in ob/ob(+/+) obese mice significantly alleviated glucose tolerance compared with untreated obese mice. Unlike chromium picolinate, Cr(pa)3 does not cleave DNA under physiological reducing conditions. Collectively, these data suggest that Cr(pa)3 may represent a novel, less-toxic chromium supplement with potential therapeutic value to improve insulin sensitivity and glycemic control in type II diabetes
    • …
    corecore