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Abstract
Datacenter servers are increasingly heterogeneous: from x86
host CPUs, to ARM or RISC-V CPUs in NICs/SSDs, to FPGAs.
Previous works have demonstrated that migrating applica-
tion execution at run-time across heterogeneous-ISA CPUs
can yield significant performance and energy gains, with
relatively little programmer effort. However, FPGAs have
often been overlooked in that context: hardware accelera-
tion using FPGAs involves statically implementing select
application functions, which prohibits dynamic and trans-
parent migration. We present Xar-Trek, a new compiler and
run-time software framework that overcomes this limitation.
Xar-Trek compiles an application for several CPU ISAs and
select application functions for acceleration on an FPGA,
allowing execution migration between heterogeneous-ISA
CPUs and FPGAs at run-time. Xar-Trek’s run-time monitors
server workloads and migrates application functions to an
FPGA or to heterogeneous-ISA CPUs based on a scheduling
policy. We develop a heuristic policy that uses application
workload profiles to make scheduling decisions. Our eval-
uations conducted on a system with x86-64 server CPUs,
ARM64 server CPUs, and an Alveo accelerator card reveal
88%-1% performance gains over no-migration baselines.

CCSConcepts: •Computer systems organization→Re-
configurable computing; Heterogeneous (hybrid) sys-
tems;High-level language architectures; •Applied com-
puting→ Data centers.
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1 Introduction
The increasing demand for performance, power efficiency,
and reduced form factor is introducing greater architectural
heterogeneity in cloud datacenter servers [4, 5]. Many sys-
tem components, notably I/O devices such as NICs and SSDs,
increasingly incorporate general-purpose CPUs whose ISAs
(usually ARM or other RISC) differ from that of host CPUs’
(usually x86-64). A recent addition to this trend is reconfig-
urable logic [1] [19]. FPGAs have increasingly been deployed
as discrete, PCIe-connected accelerator cards in NICs to boost
network packet processing [56] [17] [35] and in SSDs to en-
able near data processing [33]. FPGAs are also increasingly
co-located with other processing units or accelerators in the
same chip, e.g., Xilinx Versal [59], Intel Agilex [28].

Application development for increasingly heterogeneous
hardware is non-trivial, primarily due to the fundamental
differences between general-purpose, special purpose, and re-
configurable processing units. Ideally, a programmer would
write an application once, and then compile and execute it
among all available processing units, automatically achiev-
ing improved properties of interest such as high performance
and reduced power consumption.
Recent work [5, 6, 15, 22, 34, 43, 53] has demonstrated

that migrating application execution across general-purpose
heterogeneous-ISA CPUs at run-time can yield performance
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and energy efficiency gains. For example, in the datacen-
ter multi-tenant model where several applications share the
same hardware infrastructure, it may be desirable to execute
software processes on power-efficient ARM CPUs during
low demand, and dynamically migrate them to highly perfor-
mant x86 CPUs when the workload increases. Notably, prior
work has accomplished these gains with relatively little pro-
grammer involvement: applications written for a traditional
shared memory programming model (e.g., POSIX, OpenMP)
can be made to run on such hardware without significant
custom modifications. This improved programmability is
accomplished through innovations across the system soft-
ware stack (i.e., operating system, compiler, run-time), which
hides complexities such as ISA/ABI differences, CPUs’ dis-
joint physical memory, scheduling, and resource manage-
ment. These works, however, have excluded FPGAs.

In the hardware acceleration domain, application develop-
ment and execution largely follows a static model: selected
application functions suitable for hardware implementation
are first described in high-level languages such as C or C++,
or hardware description languages such as VHDL or Ver-
ilog. Using FPGA development tools, the functions are then
mapped to FPGA logic resources, enabling applications to
exploit CPUs and FPGAs during execution. However, once
those functions have been mapped to the FPGA, they execute
on the FPGA for their entire lifetime. In other words, the
mapping of application to CPUs and FPGAs does not change.
This static model is highly effective for settings where the
CPU/FPGA hardware is exclusively used for a single applica-
tion, and the reconfigurable logic literature has intensively
studied various problems in this space such as how to imple-
ment functions on FPGAs for optimal performance [36] [16]
[25] [29] and how to improve FPGA programming [39] [42].
In the datacenter multi-tenant model, sharing hardware

resources among applications can improve overall resource
utilization and reduce hardware costs. In fact, machine ac-
quisition costs are one of the major drivers of datacenter
costs [9], and vendors are constantly seeking ways to reduce
capital costs – e.g., Amazon [62] and Oracle [44] recently
introduced ARM-based servers in their cloud platforms to
provide low-cost compute capabilities. Nonetheless, datacen-
ter applications are increasingly computationally demand-
ing, which are often satisfied at a better performance/density
by special-purpose accelerators or FPGAs, instead of CPUs.
FPGAs have several advantages over special-purpose accel-
erators such as customizability and lower Thermal Design
Power (TDP). Thus, datacenter vendors are fast incorporat-
ing FPGA-equipped servers [50], and a variety of FPGAs
are now publicly available – e.g., Xilinx Virtex UltraScale+
from Amazon AWS [1], Huawei Cloud [26], and Alibaba
Cloud [14]; Xilinx Kintex UltraScale from Baidu Cloud [2];
Xilinx Alveo Accelerators from Nimbix [27]; Intel Arria 10
from Alibaba Cloud [13] and OVH [45].

In this paper, we explore the feasibility of dynamically pro-
visioning FPGAs in datacenters among several tenants, in
particular, as a means to alleviate dynamic workload spikes
on servers. In contrast to state-of-the-art and -practice, we
consider a model in which an FPGA is not always exclusively
provisioned for a client that demands and pays for accelera-
tion. Rather, applications belonging to a multi-tenant server
are allowed to use and share an attached FPGA, when the
FPGA is not committed to any one client. As a result, this mi-
gration of application functions to the FPGA at run-time can
help alleviate server workload spikes and improve overall ap-
plication performance. Since every application function may
not have optimal execution time on CPU-FPGA hardware
(e.g., for a function’s compute kernel, FPGA resources may
be insufficient or data transfer costs may be high), careful
selection of functions for execution migration is necessary:
migration should improve overall performance.

Thus, in our model, we treat FPGAs as a special compute
capability, intended for acceleration. In addition, when the
FPGA is not employed for this primary use case, we propose
using it to offload functions to alleviate server workload
spikes. The model therefore has the potential to not only
improve overall resource utilization and performance, but
also reduce hardware costs. Rather than migrate applications
to another server to alleviate workload spikes, the FPGA’s
cost is "already paid for," as an acceleration capability for
select customers.

Such a model raises several interesting questions:
1. What infrastructure can enable application function

migration across server CPUs and FPGAs at run-time,
with relatively little programmer involvement?

2. When is dynamic execution migration to the FPGA ef-
fective? In particular, under what workload conditions
is migration effective or not effective?

3. Which functions should be migrated to the FPGA to
improve overall application performance, and how can
these functions be selected efficiently?

In this context, we present Xar-Trek1, a compiler and run-
time framework which enables execution migration of appli-
cation functions from heterogeneous-ISA server host CPUs
to FPGAs at run-time. We focus on performance in data-
center settings. As such, our hardware is server-grade: Intel
Xeon x86 CPUs, ThunderX ARM CPUs, and an Xilinx Alveo
FPGA card, interconnected using high-speed interconnects.
Xar-Trek’s compiler (Section 3.1) generates multi-ISA bina-
ries that include FPGA implementations for a select set of
application functions with very little programmer involve-
ment. Xar-Trek’s run-time (Section 3.2) includes a scheduler
infrastructure that monitors server workloads and migrates
functions across heterogeneous-ISA CPUs and the FPGA.
We develop a heuristic policy that uses application workload

1The name reflects the idea of “trekking" across X86 and arm CPUs and
hardware with reconfigurable logic.
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profiles to make scheduling decisions. Our evaluation studies
(Section 4) conducted using compute-intensive applications
reveal Xar-Trek’s effectiveness: performance gains in the
range of 88%-1% over x86- and FPGA-only baselines.

A large body of prior work has studied heterogeneous sys-
tems including CPU/FPGAs, CPU/GPUs, and heterogeneous-
ISA CPUs (Section 6). However, in contrast to Xar-Trek, they
do not consider heterogeneous-ISA CPUs augmented with
FPGAs as a compute capability to alleviate dynamic server
workload spikes in a multi-tenant setting.

Xar-Trek has several limitations (Section 5) including re-
strictions on migrate-able code, the granularity of the unit
of execution migration, and limitation to C, among others.

The paper’s main contributions include:

1. A compiler that producesmulti-ISA binaries augmented
with hardware implementations of select application
functions capable of migration across heterogeneous-
ISA server CPUs and FPGAs at run-time.

2. A run-time system that monitors server workloads
and migrates application functions across ISA-diverse
CPUs and an FPGA according to a scheduling policy.

3. A scheduling policy that aims to improve overall per-
formance by dynamically selecting functions for mi-
gration across ISA-diverse CPUs and an FPGA.

2 Background
Hardware Acceleration. FPGA-based hardware accelera-
tion has been used in a variety of application domains, such
as genome sequencing [36], clustering algorithms [24], and
databases [46]. The development of applications that can
take advantage of hardware accelerators often depends on
the expertise of hardware designers regarding complex tools,
although there is significant automation in generating con-
figuration files (bitstreams) and integrating them with host
applications [11]. The traditional approach to hardware ac-
celeration always targets the FPGA to execute accelerated
functions. Software versions of select application functions
are converted into hardware kernels with the aid of EDA
tools such as Xilinx’s Vitis [58]. Thereafter, the host applica-
tion is instrumented to transfer the input data to the FPGA,
call the function in hardware, wait for the execution to com-
plete, and transfer the results back to the host CPU. When
the hardware version of the selected function is slower than
its software version, the hardware kernel is discarded.
Heterogeneous-ISA Platforms. Traditionally, compiled
applications cannotmigrate at run-time across heterogeneous-
ISA CPUs because of the ISA difference. Recent research (e.g.,
Popcorn Linux [4–6, 43], Venkat and Tullsen [15, 53], K2 [34],
Comet [22]) overcome this through multi-ISA compilation
and cross-ISA program state transformation at run-time. For
most of those, after source code is lowered to an intermediate
representation, the compilation process inserts “migration
points" where program has equivalent memory state across

ISAs [54] and therefore execution migration across ISAs is
possible. At run-time, the migration points call-back into
a run-time library, which, according to a scheduling pol-
icy, makes migration decisions [5]. The compiler generates
ISA-specific machine code for each ISA-different CPU, and
aligns all symbols (i.e., globals, statics, functions) at the same
virtual address across all ISAs, for uniform meaning of ad-
dresses. Metadata necessary for transforming the program
state at run-time (e.g., live variables at call sites) are also
generated (i.e., by a liveness pass). At run-time, when a mi-
gration decision is made at a migration point, the run-time
library transforms the program’s dynamic state that is ISA-
specific (e.g., stack, registers) from the source ISA format to
the destination ISA format, leveraging the metadata.
In heterogeneous-ISA hardware with no shared memory

between ISA-different CPUs, prior work [5, 34] implements
distributed shared memory (DSM) [20, 48] as a first-class OS
abstraction. DSM provides sequentially-consistent memory
state across (ISA-different) CPUs. Thus, once the run-time
library transforms the program state, thread or process ex-
ecution can resume on the destination ISA, observing the
same program order as that on the source ISA.

Since the Popcorn Linux [5] infrastructure is publicly avail-
able, our work builds on top of it with a compiler and run-
time for x86 CPUs, ARM CPUs, and FPGAs.

3 The Xar-Trek Compiler and Run-Time
Framework

At a high-level, Xar-Trek’s compiler framework works as
follows. An application is first profiled to determine the
functions that can be executed on the three architectures.
For each function that can be implemented in hardware, a
subsequent step instruments the code to insert calls to Xar-
Trek’s scheduler (which makes scheduling decisions) and to
an FPGA configuration function (which pre-configures the
FPGA for the function). The Popcorn Linux compiler [5] is
then invoked on this instrumented code to producemulti-ISA
binaries that can execute on x86-64 and ARM64 CPUs.

In the next step, the functions that can be implemented in
FPGA, as identified in the profiling step, are mapped to the
FPGA using the Xilinx compiler, generating hardware object
files, which are then used to generate FPGA configuration
files, followed by generating hardware kernels, which are
downloaded to the FPGA.
In the compiler’s final step, applications are executed in

different migration scenarios and x86 CPU load thresholds
at which execution migration to ARM CPU or FPGA is likely
effective, is determined. Xar-Trek’s run-time system dynam-
ically refines these thresholds based on run-time behaviors.
Xar-Trek’s run-time system contains a userspace sched-

uler client and a scheduler server, which are integrated with
application functions during the compiler’s instrumentation
step. The client executes after functions return from their
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Figure 1. The Xar-Trek compiler framework.

execution and uses the observed run-time execution times
to refine the statically determined x86 CPU load thresholds.
The scheduler server is invoked before function calls and
makes policy decisions on where to execute functions.

We now explain the framework in detail.

3.1 The Compiler Framework
Figure 1 illustrates Xar-Trek’s compiler framework. Each
step of the framework, A - G , involves a separate program.
All steps are unique to Xar-Trek, except theMulti-ISA Binary
Generation step C , which is leveraged from Popcorn Linux.
The first step, Profiling ( A in Figure 1), is a manual step

performed by an application designer to define the func-
tion(s) that can be executed on any of the three target ar-
chitectures. Profiling tools such as gprof [23] and valgrind
[41] can be used to assist with this task. This manual step’s
outcome is a text file which describes: 1) the hardware plat-
form; 2) the applications; and 3) the selected functions of
each application. This task is very important due to the fact
that the switch from software to hardware is done at func-
tion boundaries. We made this design decision as current
Xilinx tools only support self-contained functions and do not
allow converting only parts of a function to hardware. 2 The
frequency the main application calls the candidate function
is an important parameter to be considered. It is not viable
to have a function called many times due to the overhead
imposed on the communication with the FPGA board.

The next two steps, Instrumentation B and Multi-ISA Bi-
nary Generation C , are fully automated and generate exe-
cutable files for both x86-64 and ARM64 CPUs. Xar-Trek’s
scheduler is implemented using a client/server architecture.

2Extending Xilinx tools to support this functionality is outside the paper’s
scope. In some situations, functions can be outlined to overcome this limi-
tation. Note that the paper’s contribution is orthogonal to this: Xar-Trek’s
compiler/run-time infrastructure and scheduling policy are independent of
the granularity of the unit of execution migration.

For each application function selected for implementation
in hardware, the instrumentation step inserts calls for the
scheduler client in the application to communicate with the
scheduler server, using sockets and signals (see Section 3.2).
These calls are placed at the beginning and at the end of the
application’s main function. In addition, at the main func-
tion’s start, the tool inserts a call to a function that configures
the FPGA and prepares it to run each selected function when
needed. This technique allows the hardware kernel to be
called without having to wait for its initialization. As we
show in Section 4, this is important for applications that use
hardware kernels more than once. The instrumentation step
also replaces the original call of the selected functions with
calls to different targets (x86, ARM, and FPGA) according to
a flag set by the scheduler client.
The instrumented application is the input to the Multi-

ISA Binary Generation step C , which invokes the Popcorn
compiler to generate binaries for x86-64 and ARM64 CPUs.

The file produced by the profiling step is the input to the
Xilinx Object Generation step D . This step automatically
moves the selected functions for hardware implementation
to new files and invokes the Xilinx Vitis compiler to map
them to the FPGA, generating one Xilinx Object (XO) file for
each function. Vitis automatically performs this mapping. Al-
though HLS pragmas can be manually inserted in the source
code, our work primarily targets software developers who
may not have experience with high-level synthesis. Thus,
we rely on off-the-shelf tools to optimize hardware kernels.
Our premise is that users (and datacenter operators) want to
take advantage of FPGA resources (when they are available)
for their applications, and in doing so, trust optimizations
provided by FPGA development tools such as Vitis. At the
same time, our toolchain allows the use of any optimized
hardware libraries already available from FPGA vendors.
The next step, XCLBIN Partitioning E , gathers informa-

tion about the FPGA resource utilization from the XO files
and the area available in the hardware platform to estimate
howmany functions can be grouped in one configuration file.
The hardware platform contains all the static hardware mod-
ules inside the FPGA, comprising of the host CPU interface,
reconfiguration control, memory controllers, and reserved
areas to receive the hardware kernels. The hardware plat-
form and all the selected functions, present in the XO files,
are integrated into one binary file, called XCLBIN, which is
downloaded into the FPGA. In the event that more than one
XCLBIN is needed to host all the selected functions, the tool
automatically assigns them to multiple XCLBIN files. This
automatic partitioning can also be manually performed by as-
signing each function to a specific XCLBIN file, allowing the
designer to iteratively define the higher priority functions
that will be assembled in the same XCLBIN file.

Subsequently, the XCLBIN Generation step F uses the as-
signment of functions to XCLBIN(s) to call the Vitis compiler
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to implement the hardware kernels. The XCLBIN(s) are then
downloaded to the FPGA platform.

The Threshold Estimation step G enables Xar-Trek’s sched-
uler to efficiently utilize the hardware kernels. First, the total
execution time of each application, in isolation, is measured
in two migration scenarios: 1) x86-to-ARM and 2) x86-to-
FPGA. By measuring the total execution time with migra-
tion included, we ensure that all communication overhead
inherent to hardware acceleration is accounted for when
the scheduler decides where to execute each function at
run-time. Subsequently, the estimation tool executes each
application on the x86 CPU while increasing the CPU load,
until the application’s execution time exceeds the previously
recorded execution times for the two migration scenarios,
x86-to-ARM and x86-to-FPGA. (The CPU load is increased
by executing, in parallel, new instances of the same applica-
tion.) Our rationale is that by determining the CPU load at
which an application’s x86 execution time exceeds its x86-to-
ARM execution time and x86-to-FPGA execution time, we
can reasonably estimate the load at which migration is likely
effective. The tool records these CPU loads as “threshold
values" to trigger execution migration to ARM and FPGA,
respectively. The tool outputs a table that describes, for each
application, 1) the application name, 2) the hardware kernel
of the application’s function, 3) the FPGA threshold, and 4)
the ARM threshold.

The execution of an application’s selected functions on the
ARM CPU or on the FPGA board incurs a communication
overhead when compared to executing the entire application
only on the x86 CPU. In order to migrate the function to the
ARM CPU, it is necessary to first transform the application
data and the program state from the source ISA/ABI format
to the destination ISA/ABI format3 and then transfer the
data and the state using a communication channel such as
the Ethernet interface (using its driver). Since this channel is
shared among all the running processes, it is non-trivial to
estimate the communication overhead. In the FPGA case, the
communication overhead involves preparing the application
data to be sent to the device,4 and the time to send/receive
this data to the board, usually through the PCIe interface.
As in the ARM case, this interface is also shared and esti-
mating the communication cost is a challenge. The approach
adopted by Xar-Trek is to measure the execution time in
locus. By doing so, we ensure that all communication over-
head inherent to function migration to ARM/FPGA, even
when the data-transfer interfaces are different (Ethernet or
PCIe), is accounted for when the scheduler decides where to
execute each function at run-time.

3This state transformation is done by the Popcorn Linux run-time.
4In the FPGA case, state transformation is not necessary as migration from
software to hardware occurs only at function boundaries, and the function’s
hardware implementation operates on self-contained, in-memory data.

Figure 2. Xar-Trek’s run-time system for a heterogeneous-
ISA platform with x86 and ARM CPUs and an FPGA. Flag
equals target ID.

Note the Xar-Trek compiler’s clear delta over the Popcorn
Linux compiler [5]: all steps A - G are unique to the Xar-
Trek compiler, except the Multi-ISA Binary Generation step
C , which is leveraged from Popcorn Linux.

3.2 Run-Time System
Xar-Trek’s run-time system’s main component is a user-
space scheduler that dynamically decides where each applica-
tion function should run. This run-time system is integrated
with Popcorn Linux’s run-time library. Figure 2 illustrates a
high-level view of the system.

The scheduler is implemented using a client/server model.
An instance of the scheduler client is integrated with each
application binary (x86, ARM). The scheduler client imple-
ments a procedure (see Section 3.3) to dynamically update
the threshold table generated during compilation. The sched-
uler server, which encapsulates the scheduling policy (see
Section 3.4), runs on the x86 host. The clients and the server
communicate with each other to decide when and where to
migrate applications’ functions.

Applications are initially launched on x86 host CPUs, one
process per CPU. A scheduler client instance is also inte-
grated with the base Popcorn run-time. This scheduler in-
stance monitors a migration flag to decide a function’s mi-
gration target: 0) x86 (do not migrate); 1) ARM (migration to
ARM CPU, i.e., software migration); and 2) FPGA (hardware
migration). Software migration is already implemented by
Popcorn’s run-time. Hardware migration employs OpenCL
APIs in the Xilinx Runtime Library (XRT) [60] to: 1) config-
ure the hardware accelerator card; 2) manage data movement
between the host and the accelerator card; and 3) orchestrate
function execution.
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3.3 Dynamic Threshold Update
The scheduler client instance implements Algorithm 1 to
dynamically update the threshold table that was generated
during compilation (Section 3.1).
The algorithm starts by recording the data every time a

function returns from its call (lines 1-2). After that, if the
application is running on the x86 CPU, it compares the ex-
ecution time against the FPGA execution time and the x86
CPU load against the FPGA threshold. As a result of this
comparison, the FPGA threshold is updated with the x86
CPU load (lines 4-5). If the x86 execution time is greater than
the ARM execution time, the algorithm checks the x86 CPU
load to verify that it is smaller than the ARM threshold and,
if affirmative, updates the ARM threshold (lines 7-8). If none
of these conditions are met, the algorithm only updates the
x86 execution time (line 10).

Algorithm 1: Xar-Trek’s dynamic threshold update
procedure.

1 Record application execution time;
2 Record CPU Load;
3 if Application executed on x86 then
4 if (x86exec > FPGAexec) and (x86LOAD < FPGATHR)

then
5 FPGATHR = x86LOAD ;
6 else
7 if (x86exec > ARMexec) and (x86LOAD <

ARMTHR) then
8 ARMTHR = x86LOAD ;
9 else
10 Record x86exec;
11 end
12 end
13 else
14 if Application executed on ARM then
15 if (ARMexec > x86exec) then
16 Increase ARMTHR ;
17 end
18 else
19 if Application executed on FPGA then
20 if (FPGAexec > x86exec) then
21 Increase FPGATHR ;
22 end
23 end
24 end
25 end

If the application is running on the ARM CPU, the sched-
uler checks if the execution time on this CPU is greater than
that on the x86 CPU recorded before, and, if affirmative,
increases the ARM threshold (lines 14-17).

The last case is for when the application is running on the
FPGA. The scheduler increases the FPGA threshold when
the FPGA execution time is greater than the x86 execution
time (lines 19-23).

By measuring the execution time immediately before the
application terminates, the scheduler is able to use real-time
data to update the threshold table. This increases the ac-
curacy of the information that the scheduler can use in its
policy decisions about where to execute an application func-
tion for its next invocation.

3.4 Scheduling Policy
Xar-Trek’s scheduler uses a heuristic policy, which is im-
plemented in the scheduler server. The scheduling policy’s
pseudo-code is shown in Algorithm 2.

During initialization, information about hardware kernels
embedded in the XCLBIN file is collected, the socket con-
nection is stabilized, and the timer used to obtain the x86
CPU load is started. This data is used in conjunction with the
threshold table generated by the estimation tool to determine
targets for select functions.
The main loop (lines 2-31) waits for a request from each

application and, when accepted, reads the threshold table
(lines 5-6). If the hardware kernel is not present on the FPGA
and the x86 load is greater than the FPGA threshold, the
scheduler decides to execute the function in x86 (lines 7-11)
or in ARM (lines 12-16), depending on the ARM threshold
value. In both cases, while it is executing on one of the targets,
the scheduler reconfigures the FPGA and updates the infor-
mation about the available hardware kernels in the FPGA
(lines 9-10 and 14-15). Until the reconfiguration is complete,
the function remains on the x86 CPU or may migrate to the
ARM CPU. This strategy allows us to hide the transfer and
reconfiguration latencies.

If the x86 load is less than the ARM/FPGA thresholds, the
function is executed on x86 (lines 17-19). When the x86 load
exceeds only the ARM threshold, the scheduler executes the
function on the ARM CPU (lines 20-22). These last two op-
tions happens when the x86 load exceeds the FPGA threshold
and the hardware kernel is present in the FPGA (lines 23-29).
If the FPGA threshold is less than the ARM threshold, the
function will be executed in the FPGA (lines 24-25); other-
wise, the function will be executed in ARM (lines 26-27). This
is due to the fact that the smaller threshold implies that the
target has a smaller execution time for that function.

4 Evaluation
Our evaluation hardware is the same as shown in Figure 2,
and consists of a Dell 7920 server (Xeon Bronze 3104 CPU,
1.7GHz, 6 cores, 64GB), a Cavium ThunderX server (ARM
CPU, 2GHz, 96 cores, 128GB), and a XilinxAlveoU50 card [57].
Both servers run Ubuntu 18.04.5 LTS with Popcorn Linux
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Algorithm 2: Xar-Trek’s scheduling policy.
1 Initialization;
2 Query available hardware (HW) kernels in the FPGA;
3 Set up socket communication;
4 Start timer to read x86LOAD;
5 while 1 do
6 Wait for client scheduler request;
7 if Application invokes client scheduler then
8 Accept Connection from Application (Client);
9 Read Threshold Table (ARMTHR; FPGATHR);

10 if (x86LOAD <= ARMTHR) and (x86LOAD >

FPGATHR) and (No HW Kernel) then
11 Continue on x86;
12 Reconfigure the FPGA;
13 Query Available HW Kernels in the FPGA;
14 end
15 if (x86LOAD > ARMTHR) and (x86LOAD >

FPGATHR) and (No HW Kernel) then
16 Migrate to ARM;
17 Reconfigure the FPGA;
18 Query Available HW Kernels in the FPGA;
19 end
20 if (x86LOAD <= ARMTHR) and (x86LOAD <=

FPGATHR) then
21 Continue on x86;
22 end
23 if (x86LOAD > ARMTHR) and (x86LOAD <=

FPGATHR) then
24 Migrate to ARM;
25 end
26 if (x86LOAD > FPGATHR) and (HW Kernel

Available) then
27 if (FPGATHR < ARMTHR) then
28 Migrate to FPGA;
29 else
30 Migrate to ARM;
31 end
32 end
33 end
34 end

kernel 4.4.137. The interconnects are Ethernet for the servers
(1Gbps) and PCIe (32GB/s) for the FPGA.

We focused on AI/vision and HPC workloads as repre-
sentative of compute-intensive datacenter applications and
used the following Rosetta benchmarks [64]: face detec-
tion (used in image processing [63]) and digit recognition
(used in machine learning [7]). Face detection targets im-
age sizes of 320x240 (original implementation; referred to as
‘FaceDet320’) and 640x480 (‘FaceDet640’). We updated this

Table 1. Benchmark execution times (milliseconds).

Benchmark Vanilla Linux Xar-Trek Xar-Trek

(x86 only) (x86/FPGA) (x86/ARM)

CG-A 2182 10597 8406

FaceDet320 175 332 642

FaceDet640 885 832 2991

Digit500 883 470 2281

Digit2000 3521 1229 8963

Table 2. Xar-Trek’s threshold estimation.

Benchmark HW Kernel FPGATHR ARMTHR

CG_A KNL_HW_CG_A 31 25

FaceDet320 KNL_HW_FD320 16 31

FaceDet640 KNL_HW_FD640 0 23

Digit500 KNL_HW_DR500 0 18

Digit2000 KNL_HW_DR200 0 17

benchmark to support multiple images of size 320x240 to
evaluate throughput. The digit recognition benchmark was
used with both 500 (‘Digit500’) and 2000 (‘Digit2000’) tests.
We also used HPC workloads from NAS Parallel Bench-

mark (NPB) [3] suite’s CG-A application as representative
of a class of applications that are significantly slower on the
FPGA than on x86. This benchmark is also the only one in
our evaluation that runs faster on the ARM CPU than FPGA.
Xar-Trek was used to compile each of the following five

benchmarks, while exploiting Vitis 2020.2 to generate the
XCLBIN hardware kernels: CG-A; face detection (320x240);
face detection (640x480); digit recognition (500 tests); and
digit recognition (2000 tests). The face detection kernel with
an image size of 320x240 was also used in the updated ver-
sion that allows the user to choose the number of images
processed.

Table 1 shows each benchmark’s execution time when the
selected function is executed on x86 without using Xar-Trek
(“Vanilla Linux"), along with the execution time when the
function migrates to FPGA or to ARM, using Xar-Trek.

The original face detection benchmark stores the image in
an executable file. The software function makes use of inter-
nal buffers to store this image. As the image’s size increases,
the hardware implementation outperforms x86 (Table 1’s
second and third rows), since it is using FPGA’s internal
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Table 3. CPU load definition.

CPU Load Range of number of processes

Low #processes < #x86 cores

Medium #processes > #x86 cores

#processes < (#x86 cores + #ARM cores)

High #processes > (#x86 cores + #ARM cores)

Figure 3. Average execution time of a randomized appli-
cation set with less processes than the #x86 cores in the
hardware. Lower is faster.

memories. Table 2 shows the data generated by Xar-Trek’s
threshold estimation tool, using the execution times when
the function does not migrate and when it migrates to FPGA
or to ARM.
Since the ratio of the number of application processes to

the number of available cores is a reasonable measure of CPU
load (for compute-intensive applications), we defined three
CPU loads using this metric: low, medium, and high, shown
in Table 3. Note that the total number of cores available
is 102 (6 x86 cores and 96 ARM cores). We used the five
benchmarks, where the selected function is called once per
run, inside each application.

4.1 Performance: Average Execution Time
Our first goal was to understand Xar-Trek’s effectiveness
in improving average execution time of an application set
during low loads, i.e., when the number of processes does
not exceed the number of x86 cores, and additional compute
cycles are usually not needed. During such load situations,
can Xar-Trek perform as well as an x86-only solution?
To avoid selection bias, we randomly selected (using an

uniform distribution) a set of 1, 2, 3, 4, and 5 applications
from our five benchmarks, and measured the set’s average
execution time for Xar-Trek and compared it against two
baselines: Vanilla Linux/x86 (always executed on x86), and
FPGA (always executed on FPGA). For this evaluation, the
CPU load is equal to the number of applications running in
the system.

Figure 4. Average execution time of a randomized applica-
tion set with 60 processes (more than #x86 cores, but less
than total #cores). Lower is faster.

Figure 5. Average execution time of a randomized applica-
tion set with 120 processes (more than total number of cores).
Lower is faster.

Figure 3 shows the results. In all figures (Figures 3-6), each
data point is the average of 10 runs and the standard devia-
tion is nearly zero (shown as small vertical lines at the top
of each bar). The results indicate that Xar-Trek is always
superior (except in two cases), with Vanilla Linux/x86 per-
forming the same or a close second, revealing that Xar-Trek
does not migrate in most cases, which is effective. The Vanilla
Linux/ARM bar represents the case when the application is
executed only on the ARM server, which is always slower
than the other cases. Xar-Trek’s largest and smallest gains,
compared to FPGA, are 75% and 50%. In the 5-application
case, Vanilla Linux is the best, by 21%. This is because Xar-
Trek is slower than Vanilla Linux for CG-A or Face Detection
(320x240), which are present in this case.

The results also reveal that when applications always run
on the FPGA, performance degrades significantly when there
is one application that is slower on the FPGA. In other words,
the traditional approach of always using FPGA is not always
effective in a shared tenant setting during low loads.
Our second goal was to understand Xar-Trek’s effective-

ness when the number of processes exceeds the number of
x86 cores, but not the total number of cores (medium load),
and when the number of processes exceeds the total number
of cores (high load). In these cases, additional compute cycles
are needed – can Xar-Trek migrate and yield gains?
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Figure 6. Throughput of face detection. Higher is better.

To avoid selection bias, we again randomly grouped ap-
plications in sets of 5, 10, 15, 20, and 25 from the five bench-
marks. CPU load was generated by running simultaneously
the NPB MG-B application 𝑛 times while executing each set.

Figures 4-5 show the results. Xar-Trek almost always out-
performs Vanilla Linux/x86 in medium (largest and smallest
gains: 88% and 1%) and high loads (largest and smallest gains:
31% and 19%). These results reveal Xar-Trek’s effectiveness
in dynamically selecting the right function and the right
target in order to best leverage the heterogeneous resources.

4.2 Performance: Throughput
Our third goal was to understand whether Xar-Trek can
improve the throughput of applications that call a selected
function multiple times, an important metric of interest in
datacenters. To measure this, we modified the face detection
application by allowing the user to choose the number of
images processed. This choice impacts the number of times
a selected function is called. In the original benchmark, the
image was embedded in the binary file. The modified version
reads each file before processing it. The imageswere obtained
from the WIDER dataset [61] and converted to PGM format.
Since the results from low, medium, and high loads (Figures 3-
5) revealed Vanilla Linux/ARM’s inferior performance, we
excluded it in this evaluation.

The CPU load was generated using the same approach of
the previous cases, with n equalling 0, 25, 50, 75, and 100
processes. Face detection was set to run on 1000 images for
60 seconds, after which the application was terminated, and
the number of processed images was counted. We used the
same scheduling policy and baselines as before.

The results are shown in Figure 6, which reveal Xar-Trek’s
throughput improvements when the CPU load exceeds 25
processes (average gain is ≈4x). This is because the FPGA
threshold in Table 2’s second row is 16. Thus, when the
system load exceeds 25 processes, Xar-Trek migrates the
function to the FPGA.

The results also demonstrate that Xar-Trek is even faster
than the always-FPGA baseline. This is a direct consequence
of configuring the FPGA at the very beginning of the appli-
cation, as discussed in Section 3.

Figure 7. Average execution time of thirty waves of 20 ap-
plications, forming a periodic workload. Lower is better.

Figure 8. Throughput of face detection under a periodic
workload. Higher is better.

4.3 Performance: Periodic Workload
The experiments reported so far (i.e., Figures 3-6) evaluated
Xar-Trek’s performance for a fixed workload. Although fixed
workloads allow us to understand Xar-Trek’s first-order per-
formance, they are not representative of datacenter workload
patterns which have time-varying behaviors [9], i.e., job ar-
rivals vary over time. To understand Xar-Trek’s effectiveness
for such dynamic workloads, in particular, how the sched-
uler can make effective decisions as the number of processes
quickly climb from a medium load to a high load and then
decay to a medium load, inspired by previous works [5], we
conducted experiments with a periodic workload that gener-
ated 20 processes (medium) to 160 processes (high) over time:
during an experimental time frame of 43 minutes, thirty sets
of 20 applications from our five benchmarks were launched
with an interval of 30 seconds per set, forming a wave-like
load pattern.
Figure 7 shows the average execution times for Vanilla

Linux/x86, Vanilla Linux/FPGA, and Xar-Trek for this peri-
odic workload. (We again excluded Vanilla Linux/ARM due
to its inferior performance for the fixed workload case.) Xar-
Trek outperforms Vanilla Linux/x86 and Vanilla Linux/FPGA
by 18% and 32%, respectively.
Not surprisingly, Xar-Trek’s gains in this case are rel-

atively smaller than that in the fixed workload case for
medium (Figure 4) and high (Figure 5) loads (where the
largest gainswere in the 88%-31% range) as thosemedium/high
loads are not sustained here over time; they quickly decrease
or increase. Nevertheless, the results show Xar-Trek sched-
uler’s effectiveness for a time-varying load pattern.
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Table 4. Execution time of BFS application (milliseconds).

BFS’s (# of nodes) x86 FPGA

1,000 3.36 726.50

2,000 115.74 2,282.54

3,000 256.94 4,981.05

4,000 458.04 8,760.80

5,000 721.48 13,524.76

We conducted a similar periodic workload experiment to
evaluate throughput. In this experiment, the periodic work-
load was generated by varying the number of processes from
10 (low) to 120 (high) during a time frame of 35 minutes. Fig-
ure 8 shows the results. For each of the bars shown in the
figure, the multi-face detection application was executed 10
times. Each run had a target of 1000 images to be processed
and a duration of 60 seconds. At the end of each execution,
the actual number of images processed were recorded and
divided by 60 to obtain the throughput in images per second.

Figure 8 shows that Xar-Trek outperforms Vanilla Linux/
FPGA and Vanilla Linux/x86 (50% and 175% respectively).
The worst case, as expected, is for Vanilla Linux/x86. Again,
compared to Figure 6, the throughput gains are relatively
smaller here as the load changes over time. The results
demonstrate Xar-Trek scheduler’s effectiveness for obtaining
superior throughput under time-varying loads.

4.4 Profitable Workloads
Not all applications can be accelerated using FPGAs. Tra-
ditionally, the most profitable applications for FPGAs are
compute-intensive ones such as floating point calculations,
math operations, cryptographic computations, matrix calcu-
lations, etc. (I/O-intensive applications are, of course, out of
scope.) Applications with irregular memory access patterns
generally yield inferior performance on FPGAs, especially
on PCIe-attached FPGAs, largely because the FPGA can only
operate on a limited set of local data at any given time [55].5
Applications with pointer-chasing behaviors such as graph
applications best exemplify this latter category. (In our five
application set, CG_A is the only one which exhibit this be-
havior to some degree; see Table 1.) This raises the question:
for what percentage of compute-intensive applications in a
given workload is Xar-Trek profitable?
To obtain insights to this question, we first implemented

a classical graph traversal algorithm, breadth-first-search
(BFS), and measured its execution time on our x86 and FPGA
hardware for graphs of different sizes (i.e., number of nodes).
5This may not be always true on on-chip FPGAs with cache-coherent shared
memory between CPUs and the FPGA (e.g., [28, 59]).

Figure 9. Xar-Trek’s effectiveness for different percentages
of compute-intensive applications. Lower is better.

Table 4 shows the results. For all graph sizes, x86 is faster
by multiple orders of magnitude. (Our FPGA hardware, the
Xilinx Alveo U50 FPGA card, could not support graphs with
larger than 5,000 nodes.) This means that, Xar-Trek’s thresh-
old estimation algorithm (Section 3.3) will likely not find
a reasonable CPU load that would justify migrating to the
FPGA, and will almost always determine that the best target
for the BFS function is x86.
We now conducted an experiment where we fixed the

load at 120 processes, varied the percentage of non-compute-
intensive to compute-intensive applications from 0% to 100%
in a ten-application set, and measured the average execution
time under Xar-Trek and Vanilla Linux/x86. We used CG_A
as representative of a non-compute-intensive application
since it is the slowest on the FPGA or the ARMCPU as Table 1
shows. (We did not consider BFS for this experiment as Xar-
Trek will always execute it on x86, as previously explained.)
We used digit recognition (2000 tests) as representative of a
compute-intensive application since it is one of the fastest on
the FPGA (Table 1). We ran seven experiments with different
percentages of CG_A to digit recognition.

Figure 9 shows the results. The figure’s first workload-data
point shows the case of only digit recognition applications,
clearly illustrating Xar-Trek’s correct decision to run them
on the FPGA. The last data point shows the case of only
CG_A applications, which favors Vanilla Linux/x86. The
figure also shows that Xar-Trek always outperforms Vanilla
Linux/x86 except for the last case (gains are in the 26%-32%
range), revealing that Xar-Trek is profitable as long as the
workload is dominated by compute-intensive applications.

4.5 Size of Binaries
The development process of hardware accelerators includes
the creation of two types of binary files: 1) executable and
2) hardware configuration (XCLBIN). The former is the bi-
nary generated by a traditional software compiler for CPUs
and contains the implementation for a single-ISA CPU hard-
ware, or is the binary generated by a multi-ISA compiler for
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Figure 10. Size of binaries. Smaller is better.

heterogeneous-ISA CPU hardware [5, 22, 53]. The XCLBIN
file contains the description of the hardware infrastructure
that hosts an FPGA accelerator, the FPGA accelerator, and
the interface with the host memory.
Work in [5, 22, 53] shows that multi-ISA binary file sizes

are larger than single-ISA file sizes since they contain code
for each ISA. The traditional FPGA development process
generates a binary file for a single-ISA host CPU (e.g., x86)
and an XCLBIN file for the FPGA whose size depends on
the size of the FPGA, available hardware kernels, etc. Since
Xar-Trek’s hardware includes multi-ISA CPUs and an FPGA,
it generates both binary files.
To understand the increase in the binary file sizes due to

Xar-Trek’s development process and the consequent storage
and memory overheads, we compared Xar-Trek’s file sizes
against both baselines: i) the traditional FPGA development
process (x86+FPGA) and ii) the heterogeneous-ISA develop-
ment process using Popcorn Linux for x86+ARM hardware.
Figure 10 shows the total binary size (for the two files

combined) for Xar-Trek and the two baselines for our five
applications. Not surprisingly, Xar-Trek always has a larger
binary size as it subsumes both the baselines (largest and
smallest increases are 282% and 33%, respectively). Popcorn
Linux has a larger size for the CG_A application due to its 900
LOC, as opposed to 300-500 LOC for the face detection and
digit recognition applications. Except for CG_A, Xar-Trek
does not impose a significant storage or memory overhead.

5 Limitations
Xar-Trek has several limitations. First, execution migration
to FPGAs is only possible for preselected application func-
tions. This is largely a limitation of current state-of-the-art
FPGA development tools and hardware, which restrict hard-
ware synthesis to self-contained functions with mostly CPU
and memory operations (I/O operations are excluded). This
limitation also reflects one of the motivations of using FP-
GAs: they are intended to mainly accelerate CPU-intensive
code that operates on self-contained data, i.e., "compute ker-
nels." This limitation also implies that execution migration is
only possible at function boundaries – a limitation that we

acknowledged in Section 3.1. Functions can be outlined to by-
pass this limitation in some situations, e.g., when a function’s
logic is amenable to relatively easy decomposition.
Another limitation that follows from the above is that

execution migration is limited to application code; migra-
tions inside shared libraries (e.g., glibc) and within OS sys-
tem calls are not possible. This also reflects FPGAs’ original
motivation of accelerating compute kernels. Though there
exists previous works on accelerating systems code (e.g., OS-
kernel cryptography [49], network-attached storage [52]),
it is unclear to what degree this limitation reduces resource
management flexibility in Xar-Trek’s setting.

Xar-Trek is limited to C. This limitation can be overcome
and support for languages such as C++ can be added through
additional engineering. State-of-the-practice FPGA develop-
ment tools such as the Xilinx Vitis compiler do support C++.
The Popcorn compiler used in Xar-Trek’s multi-ISA binary
generation step (Section 3.1) also is limited to C. The major
challenge in supporting languages such as C++ is generating
multi-ISA code for advanced object-oriented features such
as polymorphism and exception handling.
Xar-Trek is also limited to optimizing for performance.

Due to that focus, we used server-grade, high-performance
hardware including ThunderX ARM CPUs, which are not
power-efficient. To additionally optimize for power, low-
power embedded ARM boards can be used instead of server-
grade ARM CPUs, such as what is done in [43]. Optimizing
for power will also require computing metrics such as per-
formance per watt [18] or energy-delay-product [10, 40] to
guide execution migration. Scheduling policies inspired by
heuristics that balance power and performance in single-ISA
heterogeneous settings (e.g., [30, 47]) can be designed.

6 Related Work
A large body of prior work has studied heterogeneous sys-
tems including CPU/FPGAs, CPU/GPUs, and heterogeneous-
ISA CPUs. Our work most closely resembles prior work on
application migration between heterogeneous-ISA CPUs,
CPU/GPUs, and CPU/FPGAs. We compare and contrast Xar-
Trek with the most closely related past works.

The original body of work on heterogeneous-ISA CPUs [5,
6, 8, 15, 22, 34, 53] did not consider FPGAs. The latest work
in that line of investigation, HEXO [43], migrates unikernel
virtual machines (VMs) [38] from x86 servers to embedded
ARMboards tomaximize throughput. HEXOuses a scheduler
which decides when to migrate VMs based on an estimation
of the slowdown the job would suffer if offloaded to the
embedded system. HEXO also excludes FPGAs.

Lynx [51] is an architecture that uses the CPU cores from
an ASIC Smart NIC and the logic fabric from the FPGA smart
NIC (presented in their previous work [17]) to offload server
data and control planes from the host CPU. Lynx’s perfor-
mance improvement depends on the utilization of the eight
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ARM cores present on the ASIC smart NIC. In the case of
an FPGA Smart NIC, Lynx’s performance still depends on
the host CPU that is responsible for the application control.
In contrast, Xar-Trek does not target hardware CPU cores
inside an ASIC to execute the accelerated functions. These
functions are implemented directly in the FPGA fabric, us-
ing available hardware acceleration tools to automatically
transform candidate functions in hardware, not discarding
the original functions that can run in software, if needed.
AIRA [37] targets C/OpenMP applications and automat-

ically instruments the source code to generate executables
for CPUs and GPUs. The applications are analyzed offline in
order to help an allocation policy to decide which architec-
ture provides better performance. Subsequently, a partitioner
creates specific ports to each architecture and a load balancer
decides where to run the applications.

AIRA was evaluated on a CPU/GPU platform and demon-
strated improvements over statically allocated applications.
Xar-Trek follows AIRA’s model of dynamic execution mi-
gration but focuses on application functions for execution
migration. In addition, it allows the functions to be executed
directly in hardware, which AIRA excludes.
Flick [12] migrates application functions to an soft-core

processor inside an FPGA card connected to the host CPU
through a PCIe interface. Targeting a shared memory ap-
proach, Flick uses a customized TLB andMMU (implemented
on a microblaze processor), connected to a RISC-V core in
the FPGA. A driver on the host is used to remap the TLB in
the RISC-V core, with additional support from modifications
to the Linux kernel, such as a page fault handler, kernel ELF
loader, and a scheduler. After its execution on the processor
core, the function returns to the host CPU. This execution
model is similar to our work. However, in Xar-Trek, there
is no need for customized embedded processor cores as the
candidate functions are implemented directly in hardware.
In [31], the authors present alternatives of hardware ac-

celerators and compare them in terms of application, perfor-
mance, energy, interface with the host CPU, design method,
and integration. Applications are divided into two categories:
batch, which process high volumes of data collected and
stored in data centers, and streaming, which process high
volumes of streaming data. The former benefits from im-
provements in throughput and the latter from improvements
in latency. According to the authors, the vast majority of
systems that utilize the FPGA as a co-processor accelerate
functions that are only compute-intensive. Differently from
the alternatives shown in [31], Xar-Trek allows the execution
of the accelerated function also on the original CPU.

TornadoVM [21] is a virtualization layer implemented on
top of Tornado [32], a framework used for parallel program-
ming. TornadoVM focuses on Java applications, evaluates
their efficiency for different hardware platforms including
CPUs, GPUs, and FPGAs at run-time, and makes optimal
target selection decisions.

In order to accomplish this, applications must be quickly
compile-able for the available platforms. However, compi-
lation times of FPGA development tools are in the order
of minutes, compared to milliseconds for CPUs and GPUs.
TornadoVM solves this problem by utilizing precompiled
hardware modules. Although Xar-Trek is not focused on
Java applications, the hardware-accelerated functions are
precompiled and available in the configuration bitstream,
ready to be called by the scheduler when needed.

7 Conclusions
Datacenters increasingly incorporate heterogeneous com-
pute capabilities, from servers with GPUs to servers with
FPGAs, to more recently, servers with ISA-diverse CPUs
and FPGAs. An exemplar example of the last category is the
emergence of (x86-based) servers equipped with "Smart" I/O
devices such as SmartNICs and SmartSSDs that incorporate
ARM-based CPUs as well as FPGAs.

In datacenter’s multi-tenant setting, server workloads can
dynamically increase, degrading application performance.
Usually, this situation is alleviated by offloading work to
other servers. Servers with heterogeneous-ISA CPUs and
FPGAs provide a tantalizing alternative: dynamically mi-
grate workloads from ISA-diverse CPUs to the FPGA. Our
work shows that this is indeed possible and can yield com-
pelling performance gains. The Xar-Trek framework’s key
capabilities that make this possible include a compiler, a
run-time system, and a scheduling policy. The compiler gen-
erates multi-ISA binaries that incorporate FPGA implemen-
tations of select application functions; the run-time includes
a scheduler mechanism that monitors server workloads and
migrates functions across ISA-diverse CPUs and FPGAs; and
the scheduling policy decides what to migrate where.

Cloud vendors have started offering FPGAs, starting 2016,
notably with Amazon Web Services’s F1 instances, using the
traditional "pay-as-you-go" model: users wishing to accel-
erate their workloads with FPGAs pay for the acceleration
capability and program the FPGAs with a hardware imple-
mentation of their workloads’ compute kernels. Xar-Trek’s
vision leverages this investment in FPGAs, and exploits the
FPGA – when available – to alleviate server workload spikes
through transparent and dynamic execution migration, im-
proving resource utilization and reducing ownership costs.
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