5,789 research outputs found

    Amplatzer Septal Occluder-induced Transient Complete Atrioventricular Block

    Get PDF
    Percutaneous transcatheter atrial septal defect (ASD) closure is a widely used technique that has replaced open-heart surgical closure in many centers. The most common implant is the Amplatzer septal occluder which seems to be a highly effective and safe device. However, there are reports of complications associated with its implantation. We report a 9-year-old boy who presented with complete atrioventricular block after undergoing percutaneous closure of a large secundum ASD with an Amplatzer septal occluder. We treated the patient with oral prednisolone. The patient's atrioventricular conduction improved to second-degree Mobitz type 1 block on post-procedure day 24 and first-degree block on day 35. We conclude that patients with Amplatzer septal occluder-induced complete atrioventricular block generally have a good outcome, although it may take several weeks for improvement

    Probing Iron Accumulation in Sacchromyces cerevisiae Using Integrative Biophysical and Biochemical Techniques

    Get PDF
    Iron is an essential element for life. It is involved in a number of biological processes, including iron sulfur (Fe/S) cluster assembly and heme biosynthesis. However it is also potentially toxic due to its ability to induce formation of reactive oxygen species (ROS) via Fenton chemistry. Therefore its uptake, trafficking and utilization must be regulated to avoid its toxicological effect. It has been recently discovered that Fe/S cluster biosynthesis machinery plays a key role in the cellular iron regulation and its disruption leads to impaired iron regulation and iron accumulation within mitochondria. The iron accumulation resulted from impaired Fe/S cluster assembly in the eukaryotic model organism Saccharomyces cerevisiae (baker’s yeast) was studied. Various biophysical (e.g. Mössbauer, EPR, UV-vis spectroscopy) and biochemical (e.g. Western blots, PCR, enzyme activity assay, etc.) techniques were used to characterize the iron content in yeast mitochondria isolated from several mutants strains. In these mutants one of the proteins involved in Fe/S cluster biosynthesis (Yah1p and Atm1p) is mutated and iron regulation and metabolism are disrupted. By integrating the results obtained from these different methods, it was determined that excess iron accumulates in the mutant mitochondria as inorganic phosphate Fe(III) nano-particles exhibiting superparamagnetic behaviors. Oxygen is required for iron accumulation and nanoparticle formation. The Fe(III) nano-particles can be chemically reduced to Fe(II) then largely exported from the mitochondria. These biophysical and biochemical methods were also used to examine the iron distribution in whole yeast cells of the Aft1-1up strain in which iron regulon genes are constitutively activated and compared to that of Yah1p-depleted and wild type yeast. Constitutive activation of iron regulon genes does not alter the cellular iron distribution significantly. However disruption of Fe/S cluster assembly by Yah1p depletion causes dramatic cellular iron redistribution: the vacuolar iron is largely evacuated and most of the cellular iron probably precipitates in mitochondria as Fe(III) nanoparticles. The results provide novel insights into iron trafficking and possible signal communications between organelles within cells

    Enhancement of OVA-induced murine lung eosinophilia by co-exposure to contamination levels of LPS in Asian sand dust and heated dust.

    Get PDF
    BackgroundA previous study has shown that the aggravation of Asian sand dust (ASD) on ovalbumin (OVA)-induced lung eosinphilia was more severe in lipopolysaccharide (LPS)-rich ASD than in SiO2-rich ASD. Therefore, the effects of different LPS contamination levels in ASD on the aggravation of OVA-induced lung eosinophilia were investigated in the present study.MethodsBefore beginning the in vivo experiment, we investigated whether the ultra-pure LPS would act only on TLR4 or not using bone marrow-derived macrophages (BMDMs) of wild-type, TLR2-/-, TLR4-/- and MyD88-/- BALB/c mice. ASD collected from the desert was heated to remove toxic organic substances (H-ASD). BALB/c mice were instilled intratracheally with 12 different testing samples prepared with LPS (1 ng and 10 ng), H-ASD, and OVA in a normal saline solution. The lung pathology, cytological profiles in the bronchoalveolar lavage fluid (BALF), the levels of inflammatory cytokines/chemokines in BALF and OVA-specific immunoglobulin in serum were investigated.ResultsThe LPS exhibited no response to the production of TNF-α and IL-6 in BMDMs from TLR4-/-, but did from TLR2-/-. H-ASD aggravated the LPS-induced neutrophilic lung inflammation. In the presence of OVA, LPS increased the level of eosinophils slightly and induced trace levels of Th2 cytokines IL-5 and IL-13 at the levels of 1 ng and 10 ng. In the presence of OVA and H-ASD, LPS induced severe eosinophil infiltration and proliferation of goblet cells in the airways as well as remarkable increases in Th2 cytokines IL-5 and IL-13 in BALF. The mixture containing LPS (1 ng) showed adjuvant activity on OVA-specific IgE and IgG1 production.ConclusionsThe results suggest that H-ASD with naturally-occurring levels of LPS enhances OVA-induced lung eosinophilia via increases in Th2-mediated cytokines and antigen-specific immunoglobulin. These results indicate that LPS is a strong candidate for being a major aggravating substance in ASD

    Methyl 2-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl­idene)(thio­phen-2-yl)meth­yl]amino}-3-phenyl­propionate

    Get PDF
    In the title compound, C25H23N3O3S, an intra­molecular N—H⋯O inter­action generates an S(6) ring, which stabilizes the enamine–keto form of the compound. This S(6) ring and the pyrazole ring are essentially coplanar, making a dihedral angle of 1.49 (6)°. The bond lengths within the S(6) ring of the mol­ecule lie between classical single- and double-bond lengths, indicating extensive conjugation. The structure exhibits a thienyl-ring flip disorder, with occupancy factors in the ratio 64.7 (3):35.3 (3)
    corecore