12,456 research outputs found

    Stability of black holes based on horizon thermodynamics

    Full text link
    On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss-Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables E,P,V,T,SE,P,V,T,S. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, P=P(V,T)P=P(V,T). According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that P>0P>0 is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss-Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.Comment: 6 pages, 7 figure

    Noncommutative geometry inspired black holes in Rastall gravity

    Full text link
    Under two different metric ansatzes, the noncommutative geometry inspired black holes (NCBH) in the framework of Rastall gravity are derived and analyzed. We consider the fluid-type matter with the Gaussian-distribution smeared mass density. Taking a Schwarzschild-like metric ansatz, it is shown that the noncommutative geometry inspired Schwarzschild black hole (NCSBH) in Rastall gravity, unlike its counterpart in general relativity (GR), is not a regular black hole. It has at most one event horizon. After showing a finite maximal temperature, the black hole will leave behind a point-like massive remnant at zero temperature. Considering a more general metric ansatz and a special equation of state of the matter, we also find a regular NCBH in Rastall gravity, which has a similar geometric structure and temperature to that of NCSBH in GR.Comment: 12 pages, 5 figures. to match the published versio

    Exact solutions of embedding the four-dimensional perfect fluid in a five- or higher-dimensional Einstein spacetime and the cosmological interpretations

    Get PDF
    We investigate an exact solution that describes the embedding of the four-dimensional (4D) perfect fluid in a five-dimensional (5D) Einstein spacetime. The effective metric of the 4D perfect fluid as a hypersurface with induced matter is equivalent to the Robertson-Walker metric of cosmology. This general solution shows interconnections among many 5D solutions, such as the solution in the braneworld scenario and the topological black hole with cosmological constant. If the 5D cosmological constant is positive, the metric periodically depends on the extra dimension. Thus we can compactify the extra dimension on S1S^1 and study the phenomenological issues. We also generalize the metric ansatz to the higher-dimensional case, in which the 4D part of the Einstein equations can be reduced to a linear equation.Comment: 8 pages, 1 figures; v2: minor errors corrected; v3: references added; v4: matches the version to appear in PL

    Octet-baryon masses in finite space

    Full text link
    We report on a recent study of finite-volume effects on the lowest-lying octet baryon masses using the covariant baryon chiral perturbation theory up to next-to-leading order by analysing the latest nf=2+1n_f = 2 + 1 lattice QCD results from the NPLQCD Collaboration.Comment: 4 pages, 1 figure; parallel talk delivered by XLR at the 14th national conference on nuclear structure, April 12nd - 16th, 2012, Huzhou, Chin
    • …
    corecore