163,865 research outputs found

    Holographic Fermions in Striped Phases

    Full text link
    We examine the fermionic response in a holographic model of a low temperature striped phase, working for concreteness with the setup we studied in [Cremonini:2016rbd,Cremonini:2017usb], in which a U(1) symmetry and translational invariance are broken spontaneously at the same time. We include an ionic lattice that breaks translational symmetry explicitly in the UV of the theory. Thus, this construction realizes spontaneous crystallization on top of a background lattice. We solve the Dirac equation for a probe fermion in the associated background geometry using numerical techniques, and explore the interplay between spontaneous and explicit breaking of translations. We note that in our model the breaking of the U(1) symmetry doesn't play a role in the analysis of the fermionic spectral function. We investigate under which conditions a Fermi surface can form and focus in particular on how the ionic lattice affects its structure. When the ionic lattice becomes sufficiently strong the spectral weight peaks broaden, denoting a gradual disappearance of the Fermi surface along the symmetry breaking direction. This phenomenon occurs even in the absence of spontaneously generated stripes. The resulting Fermi surface appears to consist of detached segments reminiscent of Fermi arcs.Comment: v2: 43 pages, 20 figures. Major revision, title and abstract modified, new discussion added, conclusions unchanged. To appear in JHE

    A Systemic Receptor Network Triggered by Human cytomegalovirus Entry

    Get PDF
    Virus entry is a multistep process that triggers a variety of cellular pathways interconnecting into a complex network, yet the molecular complexity of this network remains largely unsolved. Here, by employing systems biology approach, we reveal a systemic virus-entry network initiated by human cytomegalovirus (HCMV), a widespread opportunistic pathogen. This network contains all known interactions and functional modules (i.e. groups of proteins) coordinately responding to HCMV entry. The number of both genes and functional modules activated in this network dramatically declines shortly, within 25 min post-infection. While modules annotated as receptor system, ion transport, and immune response are continuously activated during the entire process of HCMV entry, those for cell adhesion and skeletal movement are specifically activated during viral early attachment, and those for immune response during virus entry. HCMV entry requires a complex receptor network involving different cellular components, comprising not only cell surface receptors, but also pathway components in signal transduction, skeletal development, immune response, endocytosis, ion transport, macromolecule metabolism and chromatin remodeling. Interestingly, genes that function in chromatin remodeling are the most abundant in this receptor system, suggesting that global modulation of transcriptions is one of the most important events in HCMV entry. Results of in silico knock out further reveal that this entire receptor network is primarily controlled by multiple elements, such as EGFR (Epidermal Growth Factor) and SLC10A1 (sodium/bile acid cotransporter family, member 1). Thus, our results demonstrate that a complex systemic network, in which components coordinating efficiently in time and space contributes to virus entry.Comment: 26 page

    Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials

    Get PDF
    Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports.Comment: 4 figure

    Hawking Radiation of Fermionic Field and Anomaly in 2+1 Dimensional Black Holes

    Full text link
    The method of anomaly cancellation to derive Hawking radiation initiated by Robinson and Wilczek is applied to 2+1 dimensional stationary black holes. Using the dimensional reduction technique, we find that the near-horizon physics for the fermionic field in the background of the general 2+1 dimensional stationary black hole can be approximated by an infinite collection of two component fermionic fields in 1+1 dimensional spacetime background coupled with dilaton field and U(1) gauge field. By restoring the gauge invariance and the general coordinate covariance for the reduced two dimensional theory, Hawking flux and temperature of black hole are obtained. We apply this method to two types of black holes in three dimensional spacetime, which are BTZ black hole in Einstein gravity and a rotating black hole in Bergshoeff-Hohm-Townsend (BHT) massive gravity.Comment: 14pages, no figures, to appear in Class.Quant.Gra
    corecore