13 research outputs found

    Mesenchymal stem cells in autoimmune diseases: hype or hope?

    Get PDF
    Intervention with mesenchymal stem cells (MSCs) represents a promising therapeutic tool in treatment-refractory autoimmune diseases. A new report by Schurgers and colleagues in a previous issue of Arthritis Research & Therapy sheds novel mechanistic insight into the pathways employed by MSCs to suppress T-cell proliferation in vitro, but, at the same time, indicates that MSCs do not influence T-cell reactivity and the disease course in an in vivo arthritis model. Such discrepancies between the in vitro and in vivo effects of potent cellular immune modulators should spark further research and should be interpreted as a sign of caution for the in vitro design of MSC-derived interventions in the setting of human autoimmune diseases

    Integration of gene ontology pathways with North American Rheumatoid Arthritis Consortium genome-wide association data via linear modeling

    Get PDF
    We describe an empirical Bayesian linear model for integration of functional gene annotation data with genome-wide association data. Using case-control study data from the North American Rheumatoid Arthritis Consortium and gene annotation data from the Gene Ontology, we illustrate how the method can be used to prioritize candidate genes for further investigation

    Transition of healthy to diseased synovial tissue in rheumatoid arthritis is associated with gain of mesenchymal/fibrotic characteristics

    Get PDF
    The healthy synovial lining layer consists of a single cell layer that regulates the transport between the joint cavity and the surrounding tissue. It has been suggested that abnormalities such as somatic mutations in the p53 tumor-suppressor gene contribute to synovial hyperplasia and invasion in rheumatoid arthritis (RA). In this study, expression of epithelial markers on healthy and diseased synovial lining tissue was examined. In addition, we investigated whether a regulated process, resembling epithelial to mesenchymal transition (EMT)/fibrosis, could be responsible for the altered phenotype of the synovial lining layer in RA. Synovial tissue from healthy subjects and RA patients was obtained during arthroscopy. To detect signs of EMT, expression of E-cadherin (epithelial marker), collagen type IV (indicator of the presence of a basement membrane) and α-smooth muscle actin (α-sma; a myofibroblast marker) was investigated on frozen tissue sections using immunohistochemistry. Fibroblast-like synoviocytes (FLSs) from healthy subjects were isolated and subjected to stimulation with synovial fluid (SF) from two RA patients and to transforming growth factor (TGF)-β. To detect whether EMT/fibrotic markers were increased, expression of collagen type I, α-sma and telopeptide lysylhydroxylase (TLH) was measured by real time PCR. Expression of E-cadherin and collagen type IV was found in healthy and arthritic synovial tissue. Expression of α-sma was only found in the synovial lining layer of RA patients. Stimulation of healthy FLSs with SF resulted in an upregulation of α-sma and TLH mRNA. Collagen type I and TLH mRNA were upregulated after stimulation with TGF-β. Addition of bone morphogenetic protein (BMP)-7 to healthy FLS stimulated with SF inhibited the expression of α-sma mRNA. The finding that E-cadherin and collagen type IV are expressed in the lining layer of healthy and arthritic synovium indicates that these lining cells display an epithelial-like phenotype. In addition, the presence of α-sma in the synovial lining layer of RA patients and induction of fibrotic markers in healthy FLSs by SF from RA patients indicate that a regulated process comparable to EMT might cause the alteration in phenotype of RA FLSs. Therefore, BMP-7 may represent a promising agent to counteract the transition imposed on synoviocytes in the RA joint

    Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis

    Get PDF
    Antibodies to citrullinated proteins (anti-cyclic-citrullinated peptide [anti-CCP] antibodies) are highly specific for rheumatoid arthritis (RA) and precede the onset of disease symptoms, indicating a pathogenetic role for these antibodies in RA. We recently showed that distinct genetic risk factors are associated with either anti-CCP-positive disease or anti-CCP-negative disease. These data are important as they indicate that distinct pathogenic mechanisms are underlying anti-CCP-positive disease or anti-CCP-negative disease. Likewise, these observations raise the question of whether anti-CCP-positive RA and anti-CCP-negative RA are clinically different disease entities. We therefore investigated whether RA patients with anti-CCP antibodies have a different clinical presentation and disease course compared with patients without these autoantibodies. In a cohort of 454 incident patients with RA, 228 patients were anti-CCP-positive and 226 patients were anti-CCP-negative. The early symptoms, tender and swollen joint count, and C-reactive protein level at inclusion, as well as the swollen joint count and radiological destruction during 4 years of follow-up, were compared for the two groups. There were no differences in morning stiffness, type, location and distribution of early symptoms, patients' rated disease activity and C-reactive protein at inclusion between RA patients with and without anti-CCP antibodies. The mean tender and swollen joint count for the different joints at inclusion was similar. At follow-up, patients with anti-CCP antibodies had more swollen joints and more severe radiological destruction. Nevertheless, the distribution of affected joints, for swelling, bone erosions and joint space narrowing, was similar. In conclusion, the phenotype of RA patients with or without anti-CCP antibodies is similar with respect to clinical presentation but differs with respect to disease course

    Anti-topoisomerase, but not anti-centromere B cell responses in systemic sclerosis display active, Ig-secreting cells associated with lung fibrosis

    No full text
    Objectives Almost all patients with systemic sclerosis (SSc) harbour autoantibodies. Anti-topoisomerase antibodies (ATA) and anti-centromere antibodies (ACA) are most prevalent and associate with distinct clinical phenotypes. B cell responses underlying these phenotypes are ill-defined. To understand how B cell autoreactivity and disease pathology connect, we determined phenotypic and functional characteristics of autoreactive B cells in ATA-positive and ACA-positive patients.Methods Levels and isotypes of autoantibodies secreted by ex vivo cultured peripheral blood mononuclear cells from patients with ATA-positive (n=22) and ACA-positive (n=20) SSc were determined. Antibody secreting cells (ASCs) were isolated by cell sorting and cultured separately. Correlations were studied between the degree of spontaneous autoantibody production and the presence and degree of interstitial lung disease (ILD).Results Circulating B cells secreting either ATA-immunoglobulin G (IgG) or ACA-IgG on stimulation was readily detectable in patients. The ATA response, but not the ACA response, showed additional secretion of autoreactive IgA. ATA-IgG and ATA-IgA were also secreted spontaneously. Additional cell sorting confirmed the presence of ATA-secreting plasmablasts. The degree of spontaneous ATA-secretion was higher in patients with ILD than in those without (p<0.001) and correlated with the degree of pulmonary fibrosis (p<0.001).Conclusion In contrast to ACA-positive patients, ATA-positive patients show signs of recent activation of the B cell response that hallmarks this disease. The degree of activation correlates with the presence and severity of ILD, the most deleterious disease manifestation. This could explain differential responsiveness to B cell depleting therapy. The abundant and spontaneous secretion of ATA-IgG and ATA-IgA may point toward a continuously activating trigger
    corecore