103 research outputs found

    QCQP-Net: Reliably Learning Feasible Alternating Current Optimal Power Flow Solutions Under Constraints

    Full text link
    At the heart of power system operations, alternating current optimal power flow (ACOPF) studies the generation of electric power in the most economical way under network-wide load requirement, and can be formulated as a highly structured non-convex quadratically constrained quadratic program (QCQP). Optimization-based solutions to ACOPF (such as ADMM or interior-point method), as the classic approach, require large amount of computation and cannot meet the need to repeatedly solve the problem as load requirement frequently changes. On the other hand, learning-based methods that directly predict the ACOPF solution given the load input incur little computational cost but often generates infeasible solutions (i.e. violate the constraints of ACOPF). In this work, we combine the best of both worlds -- we propose an innovated framework for learning ACOPF, where the input load is mapped to the ACOPF solution through a neural network in a computationally efficient and reliable manner. Key to our innovation is a specific-purpose "activation function" defined implicitly by a QCQP and a novel loss, which enforce constraint satisfaction. We show through numerical simulations that our proposed method achieves superior feasibility rate and generation cost in situations where the existing learning-based approaches fail

    Guiding the One-to-one Mapping in CycleGAN via Optimal Transport

    Full text link
    CycleGAN is capable of learning a one-to-one mapping between two data distributions without paired examples, achieving the task of unsupervised data translation. However, there is no theoretical guarantee on the property of the learned one-to-one mapping in CycleGAN. In this paper, we experimentally find that, under some circumstances, the one-to-one mapping learned by CycleGAN is just a random one within the large feasible solution space. Based on this observation, we explore to add extra constraints such that the one-to-one mapping is controllable and satisfies more properties related to specific tasks. We propose to solve an optimal transport mapping restrained by a task-specific cost function that reflects the desired properties, and use the barycenters of optimal transport mapping to serve as references for CycleGAN. Our experiments indicate that the proposed algorithm is capable of learning a one-to-one mapping with the desired properties.Comment: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019

    YOLObile: Real-Time Object Detection on Mobile Devices via Compression-Compilation Co-Design

    Full text link
    The rapid development and wide utilization of object detection techniques have aroused attention on both accuracy and speed of object detectors. However, the current state-of-the-art object detection works are either accuracy-oriented using a large model but leading to high latency or speed-oriented using a lightweight model but sacrificing accuracy. In this work, we propose YOLObile framework, a real-time object detection on mobile devices via compression-compilation co-design. A novel block-punched pruning scheme is proposed for any kernel size. To improve computational efficiency on mobile devices, a GPU-CPU collaborative scheme is adopted along with advanced compiler-assisted optimizations. Experimental results indicate that our pruning scheme achieves 14×\times compression rate of YOLOv4 with 49.0 mAP. Under our YOLObile framework, we achieve 17 FPS inference speed using GPU on Samsung Galaxy S20. By incorporating our proposed GPU-CPU collaborative scheme, the inference speed is increased to 19.1 FPS, and outperforms the original YOLOv4 by 5×\times speedup. Source code is at: \url{https://github.com/nightsnack/YOLObile}
    • …
    corecore