8,126 research outputs found

    Electric Character of Strange Stars

    Get PDF
    Using the Thomas-Fermi model, we investigated the electric characteristics of a static non-magnetized strange star without crust in this paper. The exact solutions of electron number density and electric field above the quark surface are obtained. These results are useful if we are concerned about physical processes near the quark matter surfaces of strange stars.Comment: 4 pages, 2 figures, LaTeX, Published in Chinese Physics Letters, Vol.16, p.77

    On the Seesaw Scale in Supersymmetric SO(10) Models

    Full text link
    The seesaw mechanism, which is responsible for the description of neutrino masses and mixing, requires a scale lower than the unification scale. We propose a new model with spinor superfields playing important roles to generate this seesaw scale, with special attention paid on the Goldstone mode of the U(1)B−LU(1)_{B-L} symmetry breaking.Comment: 15 page

    Constraining the Equation of State of Neutron Stars through GRB X-Ray Plateaus

    Full text link
    The unknown equation of state (EoS) of neutron stars (NSs) is puzzling because of rich non-perturbative effects of strong interaction there. A method to constrain the EoS by using the detected X-ray plateaus of gamma-ray bursts (GRBs) is proposed in this paper. Observations show some GRB X-ray plateaus may be powered by strongly magnetized millisecond NSs. The properties of these NSs should then satisfy: (i) the spin-down luminosity of these NSs should be brighter than the observed luminosity of the X-ray plateaus; (ii) the total rotational energy of these NSs should be larger than the total energy of the X-ray plateaus. Through the case study of GRB 170714A, the moment of inertia of NSs is constrained as I>1.0×1045(Pcri1  ms)2  g⋅cm2I>1.0\times 10^{45}\left ( \frac{P_{\rm cri}}{1\;\rm ms} \right )^{2} \;\rm g\cdot cm^{2}, where PcriP_{\rm cri} is the critical rotational period that an NS can achieve. The constraint of the radii of NSs according to GRB 080607 is shown in Table 1.Comment: 6 pages, 2 figute, The Astrophysical Journal, 886:87, 2019 December 1, https://doi.org/10.3847/1538-4357/ab490
    • …
    corecore