360 research outputs found

    Gender difference in the long-term impact of famine:

    Get PDF
    "An increasing literature examines the association between restricted fetal or early childhood growth and the incidence of diseases in adulthood. Little is known, however, about gender difference in this association. We assess the impact of nutritional deficiency in the early lives of survivors of the Chinese Great Famine in terms of health and economic welfare, paying special attention to gender differences. We found evidence of several significant negative impacts for female�but not male�survivors, and the gender differences are statistically significant. Furthermore, we show that the selection bias caused by differences in mortality plausibly explains more than two-thirds of the documented gender difference in the long-term health of famine survivors." from Author's AbstractFamine, Fetal origins hypothesis, Gender difference, Health and nutrition,

    A bead sequence-driven deposition pattern evaluation criterion for lowering residual stresses in additive manufacturing

    Get PDF
    Deposition patterns can significantly influence the distribution and magnitude of residual stress in additively manufactured parts. Time-consuming thermal-mechanical simulations and costly experimental studies are often required to identify the optimal patterns. A simple and generic method to evaluate and optimize the deposition pattern for the purpose of minimizing residual stress is in urgent need. To overcome the shortcomings of the current practice, here we propose a novel pattern evaluation criterion. Starting from the discretization of the deposition pattern by a series of sequence numbers, we introduce two interconnected concepts. The first is called “equivalent bead sequence number” which can be physically interpreted as an index of the localized heat accumulation induced by the deposition process. Based on this point-wise “equivalent bead sequence number”, the second concept called “bead sequence number dispersion index” which can be considered as a representation of the global heat accumulation gradient, is proposed as a criterion for assessing the resulting residual stress. The temperature fields and residual stresses of a square part with six typical deposition patterns predicted by thermo-mechanical finite element simulations are used to develop and verify the proposed criterion. It is found that the “equivalent bead sequence number” of a given pattern is closely correlated to the distribution of the associated temperature and residual stress. More interestingly, both the highest equivalent and highest maximum principal residual stress of a pattern linearly increase with its corresponding value of “bead sequence number dispersion index”. Guided by this relation, two new patterns with lower residual stress are developed and evaluated. Among all the patterns considered, the so-called S pattern shows the lowest value of the “bead sequence number dispersion index” which corresponds to the lowest residual stress. The proposed sequence-driven approach provides a new candidate for real-time evaluation and optimization of the deposition pattern in additive manufacturing.publishedVersio

    An information-flow-based model with dissipation, saturation and direction for active pathway inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological systems process the genetic information and environmental signals through pathways. How to map the pathways systematically and efficiently from high-throughput genomic and proteomic data is a challenging open problem. Previous methods design different heuristics but do not describe explicitly the behaviours of the information flow.</p> <p>Results</p> <p>In this study, we propose new concepts of dissipation, saturation and direction to decipher the information flow behaviours in the pathways and thereby infer the biological pathways from a given source to its target. This model takes into account explicitly the common features of the information transmission and provides a general framework to model the biological pathways. It can incorporate different types of bio-molecular interactions to infer the signal transduction pathways and interpret the expression quantitative trait loci (eQTL) associations. The model is formulated as a linear programming problem and thus is solved efficiently. Experiments on the real data of yeast indicate that the reproduced pathways are highly consistent with the current knowledge.</p> <p>Conclusions</p> <p>Our model explicitly treats the biological pathways as information flows with dissipation, saturation and direction. The effective applications suggest that the three new concepts may be valid to describe the organization rules of biological pathways. The deduced linear programming should be a promising tool to infer the various biological pathways from the high-throughput data.</p

    Microstructure and Properties of Wire Arc Additive Manufacturing of Inconel 625

    Get PDF
    In the present investigation, wire arc additive manufacturing of Inconel 625 was carried out with the cold metal transfer variant of the metal inert gas process. The heat input varied between 0.46 and 0.63 kJ/mm, which is a rather low heat input with low deposition rate. The built walls were subjected to Charpy V and crack tip opening displacement (CTOD) fracture toughness testing, in addition to microstructure examination with light microscope and scanning and transmission electron microscope. The results obtained show that hardness increases from the base metal level of 210, via the heat-affected zone (in the building plate) with HV of 220, to the weld metal, with a hardness of around 240–250. All individual Charpy V values fall within the range from 160 to 200 J, while the CTOD fracture toughness is within the range from 0.49 to 1.05 mm. The microstructure examination revealed the microsegregation of certain elements to the interdendritic regions, causing three different particle types to form. Particles with a spherical morphology were identified as spinel (MgAl2O4). Some of the spinel particles were surrounded by disc-shaped precipitates, which were identified as (NbTi)(CN), having the same orientation as the spinel.publishedVersio

    Laser Beam and Laser-Arc Hybrid Welding of Aluminium Alloys

    Get PDF
    Aluminium alloys are widely used in many industries due to their high strength-to-weight ratios and resistance to corrosion. Due to their specific thermophysical properties and intricate physical metallurgy, these alloys are challenging to weld. Work-hardened alloys may experience strength loss in heat-affected zones (HAZ). The strength of precipitation-hardened alloys is severely damaged in both HAZ and weld metal due to coarsening or full dissolution. The high thermal conductivity and reflectivity of aluminium causes lower laser beam absorptivity with lower processing efficiency. Weld imperfections such as porosity, humping, and underfills are frequently formed due to the low melting point and density promoting high liquidity with low surface tension. Porosity is the most persistent imperfection and is detrimental for mechanical properties. In this work, extensive review was made on laser beam and laser-arc hybrid welding of aluminium alloys. Solidification cracking, evaporation of alloying elements, porosity and keyhole stability, and other challenges are studied in detail. The current development of laser welding of aluminium alloys is not so mature and new discoveries will be made in the future including the use of newly developed laser systems, welding consumables, welding methods, and approaches.publishedVersio

    Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides

    Get PDF
    A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts was investigated to show various photocatalytic activities depending on different transition-metal sulfides. Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS loading enhanced the photocatalytic activity. After loading 1.0 wt.% CuS together with 1.0 wt.% Pt on ZnIn2S4, the activity for H2 evolution was increased by up to 1.6 times, compared to the ZnIn2S4 only loaded with 1.0 wt.% Pt. Here, transition-metal sulfides such as CuS, together with Pt, acted as the dual co-catalysts for the improved photocatalytic performance. This study indicated that the application of transition-metal sulfides as effective co-catalysts opened up a new way to design and prepare high-efficiency and low-cost photocatalysts for solar-hydrogen conversion
    • …
    corecore