45 research outputs found

    End-to-end Weakly-supervised Multiple 3D Hand Mesh Reconstruction from Single Image

    Full text link
    In this paper, we consider the challenging task of simultaneously locating and recovering multiple hands from single 2D image. Previous studies either focus on single hand reconstruction or solve this problem in a multi-stage way. Moreover, the conventional two-stage pipeline firstly detects hand areas, and then estimates 3D hand pose from each cropped patch. To reduce the computational redundancy in preprocessing and feature extraction, we propose a concise but efficient single-stage pipeline. Specifically, we design a multi-head auto-encoder structure for multi-hand reconstruction, where each head network shares the same feature map and outputs the hand center, pose and texture, respectively. Besides, we adopt a weakly-supervised scheme to alleviate the burden of expensive 3D real-world data annotations. To this end, we propose a series of losses optimized by a stage-wise training scheme, where a multi-hand dataset with 2D annotations is generated based on the publicly available single hand datasets. In order to further improve the accuracy of the weakly supervised model, we adopt several feature consistency constraints in both single and multiple hand settings. Specifically, the keypoints of each hand estimated from local features should be consistent with the re-projected points predicted from global features. Extensive experiments on public benchmarks including FreiHAND, HO3D, InterHand2.6M and RHD demonstrate that our method outperforms the state-of-the-art model-based methods in both weakly-supervised and fully-supervised manners

    Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

    Full text link
    Though deep learning-based object detection methods have achieved promising results on the conventional datasets, it is still challenging to locate objects from the low-quality images captured in adverse weather conditions. The existing methods either have difficulties in balancing the tasks of image enhancement and object detection, or often ignore the latent information beneficial for detection. To alleviate this problem, we propose a novel Image-Adaptive YOLO (IA-YOLO) framework, where each image can be adaptively enhanced for better detection performance. Specifically, a differentiable image processing (DIP) module is presented to take into account the adverse weather conditions for YOLO detector, whose parameters are predicted by a small convolutional neural net-work (CNN-PP). We learn CNN-PP and YOLOv3 jointly in an end-to-end fashion, which ensures that CNN-PP can learn an appropriate DIP to enhance the image for detection in a weakly supervised manner. Our proposed IA-YOLO approach can adaptively process images in both normal and adverse weather conditions. The experimental results are very encouraging, demonstrating the effectiveness of our proposed IA-YOLO method in both foggy and low-light scenarios.Comment: AAAI 2022, Preprint version with Appendi

    Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin 1 beta (IL-1β) plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an <it>in vivo </it>screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models.</p> <p>Results</p> <p>In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model.</p> <p>Conclusion</p> <p>Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug <it>in vivo</it>.</p

    Public involvement in setting a national research agenda

    Get PDF
    <p>(A) Graphical map of the BLAST results showing nucleotide identity between <i>A</i>. <i>fasciata</i> mitogenome and 15 related species listed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136297#pone.0136297.t001" target="_blank">Table 1</a>, as generated by the CGView comparison tool (CCT). CCT arranges BLAST result in an order where sequence that is most similar to the reference (<i>A</i>. <i>fasciata</i>) is placed closer to the outer edge of the map. The rings labelled 1 to17 indicate BLAST results of <i>A</i>. <i>fasciata</i> mitogenome against <i>A</i>. <i>chrysaetos</i>, <i>N</i>. <i>nipalensis</i>, <i>N</i>. <i>alboniger</i>, <i>S</i>. <i>cheela</i>, <i>A</i>. <i>monachus</i>, <i>B</i>. <i>lagopus</i>, <i>B</i>. <i>buteo</i>, <i>B</i>. <i>buteo burmanicus</i>, <i>A</i>. <i>soloensis</i>, <i>A</i>. <i>virgatus</i>, <i>A</i>. <i>gentilis</i>, <i>A</i>. <i>nisus</i>, <i>P</i>. <i>haliaetus</i>, <i>S</i>. <i>serpentarius</i>, <i>C</i>. <i>aura</i>, <i>P</i>. <i>badius</i>, and <i>S</i>. <i>leptogrammica</i>, respectively. (B) Nucleotide-based phylogenetic tree of 16 Accipitriformes species, with two Strigiformes birds as outgroups. This analysis is based on 13PCGs. Both ML and Bayesian analyses produced identical tree topologies. The ML bootstrap and Bayesian posterior probability values for each node are indicated.</p

    The chromatin remodeling protein Lsh alters nucleosome occupancy at putative enhancers and modulates binding of lineage specific transcription factors

    No full text
    Dynamic regulation of chromatin accessibility is a key feature of cellular differentiation during embryogenesis, but the precise factors that control access to chromatin remain largely unknown. Lsh/HELLS is critical for normal development and mutations of Lsh in human cause the ICF (Immune deficiency, Centromeric instability, Facial anomalies) syndrome, a severe immune disorder with multiple organ deficiencies. We report here that Lsh, previously known to regulate DNA methylation level, has a genome wide chromatin remodeling function. Using micrococcal nuclease (MNase)-seq analysis, we demonstrate that Lsh protects MNase accessibility at transcriptional regulatory regions characterized by DNase I hypersensitivity and certain histone 3 (H3) tail modifications associated with enhancers. Using an auxin-inducible degron system, allowing proteolytical degradation of Lsh, we show that Lsh mediated changes in nucleosome occupancy are independent of DNA methylation level and are characterized by reduced H3 occupancy. While Lsh mediated nucleosome occupancy prevents binding sites for transcription factors in wild type cells, depletion of Lsh leads to an increase in binding of ectopically expressed tissue specific transcription factors to their respective binding sites. Our data suggests that Lsh mediated chromatin remodeling can modulate nucleosome positioning at a subset of putative enhancers contributing to the preservation of cellular identity through regulation of accessibility

    Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression

    Get PDF
    AN INTERLOCUTORY APPEAL FROM AN ORDER ENTERED IN THE FIFTH JUDICIAL DISTRICT IN AND FOR THE COUNTY OF I ROW, STATE OF UTAH, THE HONORABLE J. PHILIP EVES, JUDGE PRESIDING

    Tethering of Lsh at the Oct4

    No full text

    Tethering of Lsh at the <i>Oct4</i> locus promotes gene repression associated with epigenetic changes

    No full text
    <p>Lsh is a chromatin remodeling factor that regulates DNA methylation and chromatin function in mammals. The dynamics of these chromatin changes and whether they are directly controlled by Lsh remain unclear. To understand the molecular mechanisms of Lsh chromatin controlled regulation of gene expression, we established a tethering system that recruits a Gal4-Lsh fusion protein to an engineered <i>Oct4</i> locus through Gal4 binding sites in murine embryonic stem (ES) cells. We examined the molecular epigenetic events induced by Lsh binding including: histone modification, DNA methylation and chromatin accessibility to determine nucleosome occupancy before and after embryonic stem cell differentiation. Our results indicate that Lsh assists gene repression upon binding to the <i>Oct4</i> promoter region. Furthermore, we detected less chromatin accessibility and reduced active histone modifications at the tethered site in undifferentiated ES, while GFP reporter gene expression and DNA methylation patterns remained unchanged at this stage. Upon differentiation, association of Lsh promotes transcriptional repression of the reporter gene accompanied by the increase of repressive histone marks and a gain of DNA methylation at distal and proximal <i>Oct4</i> enhancer sites. Taken together, this approach allowed us to examine Lsh mediated epigenetic regulation as a dynamic process and revealed chromatin accessibility changes as the primary consequence of Lsh function.</p
    corecore