82 research outputs found

    Assessing the determinants of teachers’ job happiness in the private universities

    Get PDF
    Teachers’ job happiness in private universities is an important element for the healthy and orderly development of universities and an inevitable requirement for the construction of university faculty, and it has become a hot topic of research in the field of private higher education at present. However, there is still a lack of empirical studies on the factors influencing job happiness in private universities. This study constructs a theoretical model between professional identity, job competence, professional motivation, professional prospects, perceived fairness, job achievements and job happiness, and explores the specific drivers of teachers’ job happiness in private universities based on empirical research. The results of the data analysis showed that professional identity, job competence, professional prospects, perceived fairness, job achievements, and professional motivation all had significant effects on teachers’ job happiness, and the effects were decreasing. This study examined the effects of job happiness in practice in private universities, which helped private universities to enhance teachers’ professional identity, strengthen organizational support for teacher development, promote teachers’ teaching ability, improve job competence, and build a developmental teacher evaluation mechanism

    Changes in the Material Characteristics of Maize Straw during the Pretreatment Process of Methanation

    Get PDF
    Pretreatment technology is important to the direct methanation of straw. This study used fresh water, four bacterium agents (stem rot agent, “result” microbe decomposition agent, straw pretreatment composite bacterium agent, and complex microorganism agent), biogas slurry, and two chemical reagents (sodium hydroxide and urea) as pretreatment promoters. Different treatments were performed, and the changes in the straw pH value, temperature, total solid (TS), volatile solid (VS), and carbon-nitrogen ratio (C/N ratio) under different pretreatment conditions were analyzed. The results showed that chemical promoters were more efficient than biological promoters in straw maturity. Pretreatment using sodium hydroxide induced the highest degree of straw maturity. However, its C/N ratio had to be reduced during fermentation. In contrast, the C/N ratio of the urea-pretreated straw was low and was easy to regulate when used as anaerobic digestion material. The biogas slurry pretreatment was followed by pretreatments using four different bacterium agents, among which the effect of the complex microorganism agent (BA4) was more efficient than the others. The current study is significant to the direct and efficient methanation of straw

    Research on the Food Security Condition and Food Supply Capacity of Egypt

    Get PDF
    Food security is chronically guaranteed in Egypt because of the food subsidy policy of the country. However, the increasing Egyptian population is straining the food supply. To study changes in Egyptian food security and future food supply capacity, we analysed the historical grain production, yield per unit, grain-cultivated area, and per capita grain possession of Egypt. The GM (1,1) model of the grey system was used to predict the future population. Thereafter, the result was combined with scenario analysis to forecast the grain possession and population carrying capacity of Egypt under different scenarios. Results show that the increasing population and limitations in cultivated land will strain Egyptian food security. Only in high cultivated areas and high grain yield scenarios before 2020, or in high cultivated areas and mid grain yield scenarios before 2015, can food supply be basically satisfied (assurance rate ≥ 80%) under a standard of 400 kg per capita. Population carrying capacity in 2030 is between 51.45 and 89.35 million. Thus, we propose the use of advanced technologies in agriculture and the adjustment of plant structure and cropping systems to improve land utilization efficiency. Furthermore, urbanization and other uses of cultivated land should be strictly controlled to ensure the planting of grains

    Dynamics of ammonia oxidizers and denitrifiers in response to compost addition in black soil, Northeast China

    Get PDF
    Organic fertilizer application could have an impact on the nitrogen cycle mediated by microorganisms in arable soils. However, the dynamics of soil ammonia oxidizers and denitrifiers in response to compost addition are less understood. In this study, we examined the effect of four compost application rates (0, 11.25, 22.5 and 45 t/ha) on soil ammonia oxidizers and denitrifiers at soybean seedling, flowering and mature stage in a field experiment in Northeast China. As revealed by quantitative PCR, compost addition significantly enhanced the abundance of ammonia oxidizing bacteria (AOB) at seedling stage, while the abundance of ammonia oxidizing archaea was unaffected across the growing season. The abundance of genes involved in denitrification (nirS, nirK and nosZ) were generally increased along with compost rate at seedling and flowering stages, but not in mature stage. The non-metric multidimensional scaling analysis revealed that moderate and high level of compost addition consistently induced shift in AOB and nirS containing denitrifers community composition across the growing season. Among AOB lineages, Nitrosospira cluster 3a gradually decreased along with the compost rate across the growing season, while Nitrosomonas exhibited an opposite trend. Network analysis indicated that the complexity of AOB and nirS containing denitrifiers network gradually increased along with the compost rate. Our findings highlighted the positive effect of compost addition on the abundance of ammonia oxidizers and denitrifiers and emphasized that compost addition play crucial roles in shaping their community compositions and co-occurrence networks in black soil of Northeast China

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Evaluation of Ecological Carrying Capacity and Identification of Its Influencing Factors Based on Remote Sensing and Geographic Information System: A Case Study of the Yellow River Basin in Shaanxi

    No full text
    Ecological carrying capacity (ECC), which requires simple scientific evaluation methods, is an important evaluation index for assessing the sustainability of ecosystems. We integrate an innovative research method. Geographic information systems (GIS) and remote sensing (RS) were used to evaluate the ECC of the Yellow River Basin in Shaanxi (YRBS) and to identify the underlying factors that influence it. A calculation method that combines RS and GIS data to estimate ECC based on net primary productivity (NPP) was established. The Carnegie–Ames–Stanford approach model was applied to estimate NPP. The NPP of each land type was used as an indicator to determine the yield factors. The ECC of the watershed was calculated with the carrying capacities of each land-use type. The geographical detector model was used to study the influencing factors of ECC, which provides a scientific basis for the formulation of ecological management policies in YRBS. The results show that from 2000 to 2010, it first decreased by 45.46%, and then increased by 37.06% in 2020, an overall decrease of 13.49 × 105 wha in 20 years. Precipitation is the dominant factor that affects ECC, while the impact of human activities on ECC was significantly enhanced during the study period. The developed method based on RS data serves as a reference for ecological evaluation in other similar regions

    Stratification of carbon fractions and carbon management index in deep soil affected by the Grain-to-Green Program in China.

    No full text
    Conversion of slope cropland to perennial vegetation has a significant impact on soil organic carbon (SOC) stock in A horizon. However, the impact on SOC and its fraction stratification is still poorly understood in deep soil in Loess Hilly Region (LHR) of China. Samples were collected from three typical conversion lands, Robinia psendoacacia (RP), Caragana Korshinskii Kom (CK), and abandoned land (AB), which have been converted from slope croplands (SC) for 30 years in LHR. Contents of SOC, total nitrogen (TN), particulate organic carbon (POC), and labile organic carbon (LOC), and their stratification ratios (SR) and carbon management indexes (CMI) were determined on soil profiles from 0 to 200 cm. Results showed that the SOC, TN, POC and LOC stocks of RP were significantly higher than that of SC in soil layers of 0-10, 10-40, 40-100 and 100-200 cm (P<0.05). Soil layer of 100-200 cm accounted for 27.38-36.62%, 25.10-32.91%, 21.59-31.69% and 21.08-26.83% to SOC, TN, POC and LOC stocks in lands of RP, CK and AB. SR values were >2.0 in most cases of RP, CK and AB. Moreover, CMI values of RP, CK, and AB increased by 11.61-61.53% in soil layer of 100-200 cm compared with SC. Significant positive correlations between SOC stocks and CMI or SR values of both surface soil and deep soil layers indicated that they were suitable indicators for soil quality and carbon changes evaluation. The Grain-to-Green Program (GTGP) had strong influence on improving quantity and activity of SOC pool through all soil layers of converted lands, and deep soil organic carbon should be considered in C cycle induced by GTGP. It was concluded that converting slope croplands to RP forestlands was the most efficient way for sequestering C in LHR soils

    Optimization of the Alkaline Pretreatment of Rice Straw for Enhanced Methane Yield

    Get PDF
    The lime pretreatment process for rice straw was optimized to enhance the biodegradation performance and increase biogas yield. The optimization was implemented using response surface methodology (RSM) and Box-Behnken experimental design. The effects of biodegradation, as well as the interactive effects of Ca(OH)2 concentration, pretreatment time, and inoculum amount on biogas improvement, were investigated. Rice straw compounds, such as lignin, cellulose, and hemicellulose, were significantly degraded with increasing Ca(OH)2 concentration. The optimal conditions for the use of pretreated rice straw in anaerobic digestion were 9.81% Ca(OH)2 (w/w TS), 5.89 d treatment time, and 45.12% inoculum content, which resulted in a methane yield of 225.3 mL/g VS. A determination coefficient (R2) of 96% was obtained, indicating that the model used to predict the anabolic digestion process shows a favorable fit with the experimental parameters

    Landscape Ecological Risk Assessment Based on Land Use Change in the Yellow River Basin of Shaanxi, China

    No full text
    The Yellow River Basin in Shaanxi (YRBS) has a relatively fragile ecological environment, with severe soil erosion and a high incidence of natural and geological disasters. In this study, a river basin landscape ecological risk assessment model was constructed using landscape ecology principles to investigate the temporal and spatial evolution, as well as the spatial autocorrelation characteristics of landscape ecological risks in the YRBS over a 20-year period. The main findings from the YRBS were that the land use types changed significantly over the span of 20 years, there was spatial heterogeneity of the landscape pattern, and the ecological risk value was positively correlated. The threat of landscape ecological risks in YRBS is easing, but the pressure on the ecological environment is considerable. This study provides theoretical support administrative policies for future ecological risk assessment and protection, restoration measures, and control in the Yellow River Basin of Shaanxi Province
    corecore