2,298 research outputs found

    Modulation of Noise in Submicron GaAs/AlGaAs Hall Devices by Gating

    Full text link
    We present a systematic characterization of fluctuations in submicron Hall devices based on GaAs/AlGaAs two-dimensional electron gas heterostructures at temperatures between 1.5 K to 60 K. A large variety of noise spectra, from 1/f to Lorentzian, are obtained by gating the Hall devices. The noise level can be reduced by up to several orders of magnitude with a moderate gate voltage of 0.2 V, whereas the carrier density increases less than 60% in the same range. The significant dependence of the Hall noise spectra on temperature and gate voltage is explained in terms of the switching processes related to impurities in n-AlGaAs.Comment: 5 pages, 4 fig

    Vortex images on Ba{1-x}KxFe2As2 observed directly by the magnetic force microscopy

    Full text link
    The vortex states on optimally doped Ba0.6K0.4Fe2As2 and underdoped Ba0.77K0.23Fe2As2 single crystals are imaged by magnetic force microscopy at various magnetic fields below 100 Oe. Local triangular vortex clusters are observed in optimally doped samples. The vortices are more ordered than those in Ba(Fe{1-x}Co{x})2As2, and the calculated pinning force per unit length is about 1 order of magnitude weaker than that in optimally Co-doped 122 at the same magnetic field, indicating that the Co doping at the Fe sites induces stronger pinning. The proportion of six-neighbored vortices to the total amount increases quickly with increasing magnetic field, and the estimated value reaches 100% at several tesla. Vortex chains are also found in some local regions, which enhance the pinning force as well as the critical current density. Lines of vortex chains are observed in underdoped samples, and they may have originated from the strong pinning near the twin boundaries arising from the structural transition.Comment: 7 pages, 8 figure

    Effect of Low-Intensity Pulsed Ultrasound on Nerve Repair

    Get PDF

    Evidence for Two Gaps and Breakdown of the Uemura Plot in Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 Single Crystals

    Full text link
    We report a detailed investigation on the lower critical field Hc1H_{c1} of the superconducting Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 (FeAs-122) single crystals. A pronounced kink is observed on the Hc1(T)H_{c1}(T) curve, which is attributed to the existence of two superconducting gaps. By fitting the data Hc1(T)H_{c1}(T) to the two-gap BCS model in full temperature region, a small gap of Δa(0)=2.0±0.3\Delta_a(0)=2.0\pm 0.3 meV and a large gap of Δb(0)=8.9±0.4\Delta_b(0)=8.9\pm 0.4 meV are obtained. The in-plane penetration depth λab(0)\lambda_{ab}(0) is estimated to be 105 nm corresponding to a rather large superfluid density, which points to the breakdown of the Uemura plot in FeAs-122 superconductors.Comment: 5 pages, 4 figure

    A phage-displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry

    Get PDF
    Three phage-displayed peptides designated H, S and F that recognize porcine aminopeptidase N (pAPN), the cellular receptor of porcine transmissible gastroenteritis virus (TGEV) were able to inhibit cell infection by TGEV. These same peptides had no inhibitory effects on infection of Vero cells by porcine epidemic diarrhea virus (PEDV). However, when PEDV, TGEV and porcine pseudorabies virus were incubated with peptide H (HVTTTFAPPPPR), only infection of Vero cells by PEDV was inhibited. Immunofluorescence assays indicated that inhibition of PEDV infection by peptide H was independent of pAPN. Western blots demonstrated that peptide H interacted with PEDV spike protein and that pre-treatment of PEDV with peptide H led to a higher inhibition than synchronous incubation with cells. These results indicate direct interaction with the virus is necessary to inhibit infectivity. Temperature shift assays demonstrated that peptide H inhibited pre-attachment of the virus to the cells

    Critical Fields and Anisotropy of NdO0.82F0.18FeAs Single Crystals

    Full text link
    The newly discovered iron-based superconductors have stimulated enormous interests in the field of superconductivity. Since the new superconductor is a layered system, the anisotropy is a parameter with the first priority to know. Meanwhile any relevant message about the critical fields (upper critical field and irreversibility line) are essentially important. By using flux method, we have successfully grown the single crystals NdO0.82F0.18FeAs at ambient pressure. Resistive measurements reveal a surprising discovery that the anisotropy \Gamma = (mc/mab)^{1/2} is below 5, which is much smaller than the theoretically calculated results. The data measured up to 400 K show a continuing curved feature which prevents a conjectured linear behavior for an unconventional metal. The upper critical fields determined based on the Werthamer-Helfand-Hohenberg formula are H_{c2}^{H||ab}(T=0 K) = 304 T and H_{c2}^{H||c}(T=0 K)=62-70 T, indicating a very encouraging application of the new superconductors.Comment: 12 pages, 4 figures, Submitted on 26 May, 200
    • …
    corecore