331 research outputs found

    Defects in III-nitride microdisk cavities

    Get PDF
    Nitride microcavities offer an exceptional platform for the investigation of light-matter interactions as well as the development of devices such as high efficiency light emitting diodes (LEDs) and low-threshold nanolasers. Microdisk geometries in particular are attractive for low-threshold lasing applications due to their ability to support high finesse whispering gallery modes (WGMs) and small modal volumes. In this article we review the effect of defects on the properties of nitride microdisk cavities fabricated using photoelectrochemical (PEC) etching of an InGaN sacrificial superlattice (SSL). Threading dislocations originating from either the original GaN pseudosubstrate are shown to hinder the undercutting of microdisk cavities during the photoelectric chemical (PEC) etching process resulting in whiskers of unetched material on the underside of microdisks. The unetched whiskers provide a pathway for light to escape, reducing microdisk Q-factor if located in the region occupied by the WGMs. Additionally, dislocations can affect the spectral stability of quantum dot emitters, thus hindering their effective integration in microdisk cavities. Though dislocations are clearly undesirable, the limiting factor on nitride microdisk Q-factor is expected to be internal absorption, indicating that the further optimisation of nitride microdisk cavities must incorporate both the elimination of dislocations and careful tailoring of the active region emission wavelength and background doping levels.The original research shown in this article has been funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement no. 279361 (MACONS). RAO acknowledges the Royal Academy of Engineering Leverhulme Trust Senior Research Fellowship scheme.This is the author accepted manuscript. The final version is available from the Institute of Physics via https://doi.org/10.1088/1361-6641/32/3/03300

    Analysis of defect-related inhomogeneous electroluminescence in InGaN/GaN QW LEDs

    Get PDF
    The inhomogeneous electroluminescence (EL) of InGaN/GaN quantum well light emitting diode structures was investigated in this study. Electroluminescence hyperspectral images showed that inhomogeneities in the form of bright spots exhibited spectrally blue-shifted and broadened emission. Scanning electron microscopy combined with cathodoluminescence (SEM-CL) was used to identify hexagonal pits at the centre of approximately 20% of these features. Scanning transmission electron microscopy imaging with energy dispersive X-ray spectroscopy (STEM-EDX) indicated there may be p-doped AlGaN within the active region caused by the presence of the pit. Weak beam dark-field TEM (WBDF-TEM) revealed the presence of bundles of dislocations associated with the pit, suggesting the surface features which cause the inhomogeneous EL may occur at coalescence boundaries, supported by trends in the number of features observed across the wafer.The European Research Council has provided financial support under the European Community’s Seventh Framework Programme/ ERC grant agreement no. 279361 (MACONS).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.spmi.2016.03.03

    Carrier localization in the vicinity of dislocations in InGaN

    Get PDF
    We present a multi-microscopy study of dislocations in InGaN, whereby the same threading dislocation was observed under several microscopes (atomic force microscopy, scanning electron microscopy, cathodoluminescence imaging and spectroscopy, transmission electron microscopy), and its morphological optical and structural properties directly correlated. We achieved this across an ensemble of defects large enough to be statistically significant. Our results provide evidence that carrier localization occurs in the direct vicinity of the dislocation through the enhanced formation of In-N chains and atomic condensates, thus limiting non-radiative recombination of carriers at the dislocation core. We highlight that the localization properties in the vicinity of threading dislocations arise as a consequence of the strain field of the individual dislocation and the additional strain field building between interacting neighboring dislocations. Our study therefore suggests that careful strain and dislocation distribution engineering may further improve the resilience of InGaN-based devices to threading dislocations. Besides providing a new understanding of dislocations in InGaN, this paper presents a proof-of-concept for a methodology which is relevant to many problems in materials science.This project is funded in part by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 279361 (MACONS). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure InitiativeI3). F.M. would also like to acknowledge the financial support from EPSRC Doctoral Prize Awards and Cambridge Philosophical Society. M.H. would like to acknowledge support from the Lindemann Fellowship

    Nitride Single Photon Sources

    Get PDF
    Single photon sources are a key enabling technology for quantum communications, and in the future more advanced quantum light sources may underpin other quantum information processing paradigms such as linear optical quantum computation. In considering possible practical implementations of future quantum technologies, the nitride materials system is attractive since nitride quantum dots (QDs) achieve single photon emission at easily accessible temperatures [1], potentially enabling the implementation of quantum key distribution paradigms in contexts where cryogenic cooling is impracticable

    Initial potential effect on the dissociative adsorption of methanol on a roughened platinum electrode in acidic solution

    Get PDF
    In situ Raman spectroscopic and voltammetric studies indicate that dissociative adsorption of methanol on the rough platinum electrode occurs in the hydrogen ad/desorption potential range, and the dissociative extent depends on the initial potential of the electrode before contacting methanol, in addition to the contacting time. As the dissociative product, carbon monoxide competes the site of strongly bound hydrogen preferentially, and shifts the ad/desorption potentials of weakly bound hydrogen towards more positive ones gradually with the increase of CO coverage. Whereas, formaldehyde dissociates more easily by far and completely suppresses H-adsorption. The confocal Raman spectroscopy developed on transition metals shows some intriguing advantages in investigating electrocatalytic oxidation of small organic molecules

    Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification

    Get PDF
    Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11–20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.This research was supported by the UK Engineering and Physical Sciences Research Council Grants EP/J003603/1 and EP/M011682/1. The microscopy studies were supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 279361 (MACONS). Dr. T. Ding acknowledges the support from Leverhulme Early Career Fellowship (ECF-2016-606)

    Surface Raman spectroscopic investigation of pyridine adsorption at platinum electrodes - effects of potential and electrolyte

    Get PDF
    Surface enhanced Raman spectra of pyridine (Py) at Pt electrodes have been investigated as a function of potential and supporting electrolyte. The results show a large difference from those reported for coinage metal electrodes of Ag, Au and Cu, emphasising the effective involvement of chemical enhancement on Pt surfaces. At very negative (or positive) potentials, Raman spectra show the competitive coadsorption of hydrogen (or oxygen-containing species) with Py, and in acidic solutions, PyH+ ions prefer to dissociate into Py adsorbed on Pt surfaces even in the presence of chloride ions. The differences in the surface bonding strength for Py on Pt and coinage metal electrodes are explained in terms of the different electronic configurations of the metals

    Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution

    Get PDF
    Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments

    Water imbibition of shale and its potential influence on shale gas recovery-a comparative study of marine and continental shale formations

    Get PDF
    A large volume of fracturing fluid is pumped into a well to stimulate shale formation. The water is imbibed into the reservoir during this procedure. The effect of the imbibed water on gas recovery is still in debate. In this work, we study the spontaneous imbibition of water into marine shale samples from the Sichuan Basin and continental shale samples from Erdos Basin to explore the fluid imbibition characteristics and permeability change during water imbibition. Comparison of imbibition experiments shows that shale has stronger water imbibition and diffusion capacity than relatively higher permeability sandstone. Once the imbibition stops, water in shale has stronger ability to diffuse into deeper matrix, the water content in the main flow path decreases. Experiments in this study show that marine shale has stronger water imbibition capacity than continental shale. The permeability of continental shale decreases significantly with increasing imbibition water volume; however, the permeability of marine shale decreases at first and increases after a certain imbibition time. The induced fracture is obvious in the marine shale. SEM analysis shows that the relationship between the clay mineral and organic matter of continental shale is much more complex than that of marine shale, which may be the key factor restricting the water imbibition because the flow path is trapped by swelled clay minerals. Through this study, we concluded that whether gas recovery benefits from water imbibition depends on three aspects: 1) the diffusion ability of liquid into matrix; 2) the new cracks introduced by imbibed water; and 3) the formation sensibility. This study is useful for optimizing fracture fluids and determining the best flow-back method. (C) 2016 Elsevier B.V. All rights reserved
    • …
    corecore