23 research outputs found

    High-resolution CT phenotypes in pulmonary sarcoidosis: a multinational Delphi consensus study

    Get PDF
    One view of sarcoidosis is that the term covers many different diseases. However, no classification framework exists for the future exploration of pathogenetic pathways, genetic or trigger predilections, patterns of lung function impairment, or treatment separations, or for the development of diagnostic algorithms or relevant outcome measures. We aimed to establish agreement on high-resolution CT (HRCT) phenotypic separations in sarcoidosis to anchor future CT research through a multinational two-round Delphi consensus process. Delphi participants included members of the Fleischner Society and the World Association of Sarcoidosis and other Granulomatous Disorders, as well as members' nominees. 146 individuals (98 chest physicians, 48 thoracic radiologists) from 28 countries took part, 144 of whom completed both Delphi rounds. After rating of 35 Delphi statements on a five-point Likert scale, consensus was achieved for 22 (63%) statements. There was 97% agreement on the existence of distinct HRCT phenotypes, with seven HRCT phenotypes that were categorised by participants as non-fibrotic or likely to be fibrotic. The international consensus reached in this Delphi exercise justifies the formulation of a CT classification as a basis for the possible definition of separate diseases. Further refinement of phenotypes with rapidly achievable CT studies is now needed to underpin the development of a formal classification of sarcoidosis

    Metaiodobenzylguanidine scintigraphy in pulmonary and cardiac disease

    No full text
    Purpose of review Nuclear medicine techniques have the capacity to investigate neuronal dysfunction at the synapse level. For instance, metaiodobenzylguanidine (MIBG) shows a similar uptake, storage and release as norepinephrine. Intravenously injected radiolabeled MIBG is able to reflect neuronal damage induced by inflammation and tumors. The purpose of this review is to evaluate the results and the limitation of these neuronal imaging techniques in patients with pulmonary and cardiac diseases and to give an opinion about the clinical value of these new diagnostic tools. Recent findings MIBG neuronal images of the lungs and heart can show heterogeneous distribution patterns with either diminished or increased MIBG uptake and/or washout. These changes reflect changes in endothelial integrity, neuronal innervations and clearance of norepinephrine. Interest in the role of neurotransmitter involvement and the relation between endothelial cell integrity and vascularization is growing and of utmost importance to understand the effect on pathophysiology of diseases. Summary At this moment, there is no added clinical value to routinely use MIBG scanning of the lungs and the heart. This is partly due to the many unresolved questions such as what actually happens and which factors influence MIBG uptake and washout under normal physiological circumstances. But the technique, if standardized and when dynamic time acquisition is performed with the latest equipment, such as PET and single photon emission computed tomography-computed tomography (SPECT-CT), has a tremendous potential. It can unravel upto now unknown relationships between innervation, vascularization and endothelial integrity. Other diagnostic tools such as MRI and CT do not have this capacity, so the future looks bright for these new neuronal imaging techniques

    Systematic screening versus clinical gestalt in the diagnosis of pulmonary embolism in COVID-19 patients in the emergency department.

    No full text
    BackgroundDiagnosing concomitant pulmonary embolism (PE) in COVID-19 patients remains challenging. As such, PE may be overlooked. We compared the diagnostic yield of systematic PE-screening based on the YEARS-algorithm to PE-screening based on clinical gestalt in emergency department (ED) patients with COVID-19.MethodsWe included all ED patients who were admitted because of COVID-19 between March 2020 and February 2021. Patients already receiving anticoagulant treatment were excluded. Up to April 7, 2020, the decision to perform CT-pulmonary angiography (CTPA) was based on physician's clinical gestalt (clinical gestalt cohort). From April 7 onwards, systematic PE-screening was performed by CTPA if D-dimer level was ≥1000 ug/L, or ≥500 ug/L in case of ≥1 YEARS-item (systematic screening cohort).Results1095 ED patients with COVID-19 were admitted. After applying exclusion criteria, 289 were included in the clinical gestalt and 574 in the systematic screening cohort. The number of PE diagnoses was significantly higher in the systematic screening cohort compared to the clinical gestalt cohort: 8.2% vs. 1.0% (3/289 vs. 47/574; p100 mg/L (OR 2.78, 95%CI 1.37-5.66, p = 0.005) were independently associated with PE.ConclusionIn ED patients with COVID-19, the number of PE diagnosis was significantly higher in the cohort that underwent systematic PE screening based on the YEARS-algorithm in comparison with the clinical gestalt cohort, with a number needed to test of 7.1 CTPAs to detect one PE

    Systematic screening versus clinical gestalt in the diagnosis of pulmonary embolism in COVID-19 patients in the emergency department

    No full text
    Background Diagnosing concomitant pulmonary embolism (PE) in COVID-19 patients remains challenging. As such, PE may be overlooked. We compared the diagnostic yield of systematic PE-screening based on the YEARS-algorithm to PE-screening based on clinical gestalt in emergency department (ED) patients with COVID-19. Methods We included all ED patients who were admitted because of COVID-19 between March 2020 and February 2021. Patients already receiving anticoagulant treatment were excluded. Up to April 7, 2020, the decision to perform CT-pulmonary angiography (CTPA) was based on physician’s clinical gestalt (clinical gestalt cohort). From April 7 onwards, systematic PE-screening was performed by CTPA if D-dimer level was ≥1000 ug/L, or ≥500 ug/L in case of ≥1 YEARS-item (systematic screening cohort). Results 1095 ED patients with COVID-19 were admitted. After applying exclusion criteria, 289 were included in the clinical gestalt and 574 in the systematic screening cohort. The number of PE diagnoses was significantly higher in the systematic screening cohort compared to the clinical gestalt cohort: 8.2% vs. 1.0% (3/289 vs. 47/574; p100 mg/L (OR 2.78, 95%CI 1.37–5.66, p = 0.005) were independently associated with PE. Conclusion In ED patients with COVID-19, the number of PE diagnosis was significantly higher in the cohort that underwent systematic PE screening based on the YEARS-algorithm in comparison with the clinical gestalt cohort, with a number needed to test of 7.1 CTPAs to detect one PE

    Pulmonary embolism in hospitalized COVID-19 patients:Short- and long-term clinical outcomes

    No full text
    Introduction: Pulmonary embolism (PE) is a frequent complication in COVID-19. However, the influence of PE on the prognosis of COVID-19 remains unclear as previous studies were affected by misclassification bias. Therefore, we evaluated a cohort of COVID-19 patients whom all underwent systematic screening for PE (thereby avoiding misclassification) and compared clinical outcomes between patients with and without PE. Materials and methods: We included all COVID-19 patients who were admitted through the ED between April 2020 and February 2021. All patients underwent systematic work-up for PE in the ED using the YEARS-algorithm. The primary outcome was a composite of in-hospital mortality and ICU admission. We also evaluated long-term outcomes including PE occurrence within 90 days after discharge and one-year all-cause mortality. Results: 637 ED patients were included in the analysis. PE was diagnosed in 46 of them (7.2%). The occurrence of the primary outcome did not differ between patients with PE and those without (28.3% vs. 26.9%, p = 0.68). The overall rate of PE diagnosed in-hospital (after an initial negative PE screening in the ED) and in the first 90 days after discharge was 3.9% and 1.2% respectively. One-year all-cause mortality was similar between patients with and without PE (26.1% vs. 24.4%, p = 0.83). Conclusions: In a cohort of COVID-19 patients who underwent systematic PE screening in the ED, we found no differences in mortality rate and ICU admissions between patients with and without PE. This may indicate that proactive PE screening, and thus timely diagnosis and treatment of PE, may limit further clinical deterioration and associated mortality in COVID-19 patients
    corecore