25 research outputs found

    NEURAL NETWORKS IN FORECASTING AND DECISION MAKING

    Get PDF
    Neural networks (NN) have been widely touted as solving many forecasting and decision modeling problems. For example, they are argued to be able to model easily any type of parametric or non-parametric process and also automatically and optimally transform the input data. Also, they are easy to embed in information systems and they can learn how to perform simple forecasting and decision making tasks without human input. Our research-in-progress evaluates these claims. We will spend the first half of the session reviewing our work comparing neural networks to classical techniques in time series forecasting, regression-based causal forecasting, and regression-based decision models. In tile second half of the session, we will discuss the art and science of building these models. In Hill, O\u27Connor and Remus (1992), time series forecasts based on neural networks were compared with forecasts from six statistical time series methods (including exponential smoothing and Box-Jenkins) and two judgment-based methods; we did this for 111 real financial time series. The classical methods were all estimated by experts. Across all series, the neural networks did better than or as good as statistical and judgment methods. In Marquez et al. (forthcoming), data representing three common bivariate functional forms used in causal forecasting (linear, log-linear, and reciprocal) were generated and the performance of the neural network models was compared against the true regression model across differing functional forms, sample sizes, and noise levels. The results showed that neural network models perform within 2% of the mean absolute percentage error (MAPE); this is very good performance in the real world. This work is continuing as Marquez studies issues such as the vulnerability of neural networks and regression to multicolinearity, outliers, and other data problems. In Remus and Hill (forthcoming), tile production scheduling decisions as modeled by neural networks and regression-based decision rules for sixty-two decision makers were compared. Neural network models performed as well as but not better than those using the linear regression models. In Hill and Remus (forthcoming), the above research was continued and composite neural network models were estimated. The neural networks performed better than both the classical models and neural networks from the earlier study. The coinposite neural network also performed at least as well as classical composite models

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Patent valuation : improving decision making through analysis

    No full text
    A practical resource for valuing patents that is accessible to the complete spectrum of decision makers in the patent process. In today\u27s economy, patents tend to be the most important of the intellectual property (IP) assets. It is often the ability to create, manage, defend, and extract value from patents that can distinguish competitive success and significant wealth creation from competitive failure and economic waste. Patent Valuation enhances the utility and value of patents by providing IP managers, IP creators, attorneys, and government officials with a useable resource that allows them to use actual or implied valuations when making patent-related decisions. Involves a combination of techniques for describing patent valuation Includes descriptions of various topics, illustrative cases, step-by-step valuation techniques, user-friendly procedures and checklists, and examples Serves as a useable resource that allows IP managers to use actual or implied valuations when making patent-related decisions One of the most fundamental premises of the book is that these valuation skills can be made accessible to each of the various decision makers in the patent process. Patent Valuation involves narrative descriptions of the various topics, illustrative cases, step-by-step valuation techniques, user-friendly procedures and checklists, and an abundance of examples to demonstrate the more complex concepts

    Chromosomal macrodomains and associated proteins : implications for DNA organization and replication in gram negative bacteria

    Get PDF
    The Escherichia coli chromosome is organized into four macrodomains, the function and organisation of which are poorly understood. In this review we focus on the MatP, SeqA, and SlmA proteins that have recently been identified as the first examples of factors with macrodomain-specific DNA-binding properties. In particular, we review the evidence that these factors contribute towards the control of chromosome replication and segregation by specifically targeting subregions of the genome and contributing towards their unique properties. Genome sequence analysis of multiple related bacteria, including pathogenic species, reveals that macrodomain-specific distribution of SeqA, SlmA, and MatP is conserved, suggesting common principles of chromosome organisation in these organisms. This discovery of proteins with macrodomain-specific binding properties hints that there are other proteins with similar specificity yet to be unveiled. We discuss the roles of the proteins identified to date as well as strategies that may be employed to discover new factors

    H-NS promotes looped domain formation in the bacterial chromosome

    Get PDF
    SummaryThe bacterial chromosome is organized into loops, which constitute topologically isolated domains. It is unclear which proteins are responsible for the formation of the topological barriers between domains. The abundant DNA-binding histone-like nucleoid structuring protein (H-NS) is a key player in the organization and compaction of bacterial chromosomes [1,2]. The protein acts by bridging DNA duplexes [3], thus allowing for the formation of DNA loops. Here, genome-wide studies of H-NS binding suggest that this protein is directly involved in the formation or maintenance of topological domain barriers
    corecore