50 research outputs found

    Tangential beam IMRT versus tangential beam 3D-CRT of the chest wall in postmastectomy breast cancer patients: A dosimetric comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluates the dose distribution of reversed planned tangential beam intensity modulated radiotherapy (IMRT) compared to standard wedged tangential beam three-dimensionally planned conformal radiotherapy (3D-CRT) of the chest wall in unselected postmastectomy breast cancer patients</p> <p>Methods</p> <p>For 20 unselected subsequent postmastectomy breast cancer patients tangential beam IMRT and tangential beam 3D-CRT plans were generated for the radiotherapy of the chest wall. The prescribed dose was 50 Gy in 25 fractions. Dose-volume histograms were evaluated for the PTV and organs at risk. Parameters of the dose distribution were compared using the Wilcoxon matched pairs test.</p> <p>Results</p> <p>Tangential beam IMRT statistically significantly reduced the ipsilateral mean lung dose by an average of 21% (1129 cGy versus 1437 cGy). In all patients treated on the left side, the heart volume encompassed by the 70% isodose line (V70%; 35 Gy) was reduced by an average of 43% (5.7% versus 10.6%), and the mean heart dose by an average of 20% (704 cGy versus 877 cGy). The PTV showed a significantly better conformity index with IMRT; the homogeneity index was not significantly different.</p> <p>Conclusions</p> <p>Tangential beam IMRT significantly reduced the dose-volume of the ipsilateral lung and heart in unselected postmastectomy breast cancer patients.</p

    NIK promotes tissue destruction independently of the alternative NF-κB pathway through TNFR1/RIP1-induced apoptosis

    Full text link
    NF-κB-inducing kinase (NIK) is well-known for its role in promoting p100/NF-κB2 processing into p52, a process defined as the alternative, or non-canonical, NF-κB pathway. Here we reveal an unexpected new role of NIK in TNFR1-mediated RIP1-dependent apoptosis, a consequence of TNFR1 activation observed in c-IAP1/2-depleted conditions. We show that NIK stabilization, obtained by activation of the non-death TNFRs Fn14 or LTβR, is required for TNFα-mediated apoptosis. These apoptotic stimuli trigger the depletion of c-IAP1/2, the phosphorylation of RIP1 and the RIP1 kinase-dependent assembly of the RIP1/FADD/caspase-8 complex. In the absence of NIK, the phosphorylation of RIP1 and the formation of RIP1/FADD/caspase-8 complex are compromised while c-IAP1/2 depletion is unaffected. In vitro kinase assays revealed that recombinant RIP1 is a bona fide substrate of NIK. In vivo, we demonstrated the requirement of NIK pro-death function, but not the processing of its substrate p100 into p52, in a mouse model of TNFR1/LTβR-induced thymus involution. In addition, we also highlight a role for NIK in hepatocyte apoptosis in a mouse model of virus-induced TNFR1/RIP1-dependent liver damage. We conclude that NIK not only contributes to lymphoid organogenesis, inflammation and cell survival but also to TNFR1/RIP1-dependent cell death independently of the alternative NF-κB pathway

    Radiotherapy-specific quality indicators at national level : how to make it happen

    No full text
    Purpose /objective: To promote best practice and quality of care, the Belgian College of Physicians for Radiotherapy Centers established a set of radiotherapy specific quality indicators for benchmarking on a national level. This paper describes the development, the collected QIs, the observed trends and the departments' evaluation of this initiative.Material and methods: The Donabedian approach was used, focussing on structural, process and outcome QIs. The criteria for QI selection were availability, required for low-threshold regular collection, and applicability to guidelines and good practice. The QIs were collected yearly and individualized reports were sent out to all RT departments. In 2021, a national survey was held to evaluate the ease of data col-lection and submission, and the perceived importance and validity of the collected QIs.Results: 18 structural QI and 37 process and outcome parameters (n = 25 patients/pathology/department) were collected. The participation rate amounted to 95 % overall. The analysis gave a national overview of RT activity, resources, clinical practice and reported acute toxicities. The individualized reports allowed departments to benchmark their performance.The 2021 survey indicated that the QIs were overall easy to collect, relevant and reliable. The collection of acute recorded toxicities was deemed a weak point due to inter-observer variabilities and lack of follow-up time.Conclusion: QI collection on a national level is a valuable process in steering quality improvement initia-tives. The feasibility and relevance was demonstrated with a high level of participation. The national ini-tiative will continue to evolve as a quality monitoring and improvement tool.(c) 2022 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 178 (2023) 10943
    corecore