2,261 research outputs found

    Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper

    Get PDF
    Copper monocrystals were subjected to shock compression at pressures of 10–60 GPa by a short (3 ns initial) duration laser pulse. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the µs regime. The results suggest that the defect structure is generated at the shock front. A mechanism for dislocation generation is presented, providing a realistic prediction of dislocation density as a function of pressure. The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle-Grady relationship

    Inhibitory Deficits, Delay Aversion and Preschool AD/HD: Implications for the Dual Pathway Model

    Get PDF
    The dual pathway model proposes the existence of separate and neurobiologically distinct cognitive (inhibitory and more general executive dysfunction) and motivational (delay aversion) developmental routes to AD/HD. The study reported in this paper explores the relation between inhibitory deficits and delay aversion and their association with AD/HD in a group of three-year-old children. Children identified as having a pre-school equivalent of AD/HD (N=19) and controls (N=19), matched for gender and IQ, completed a battery of inhibition and delay tasks. Correlational and factor analysis supported a dissociation between inhibitory deficits (go-no-go, set shifting) and delay aversion (choice delay) with delay of gratification cross-loading. Children with AD/HD displayed more inhibitory deficits and were more delay averse than controls. The data support the value of the distinction between motivational and cognitive pathways to AD/HD. Furthermore, the data suggest that such a distinction is apparent relatively early on during development

    Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser

    Get PDF
    Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented

    X-ray Astronomy in the Laboratory with a Miniature Compact Object Produced by Laser-Driven Implosion

    Full text link
    Laboratory spectroscopy of non-thermal equilibrium plasmas photoionized by intense radiation is a key to understanding compact objects, such as black holes, based on astronomical observations. This paper describes an experiment to study photoionizing plasmas in laboratory under well-defined and genuine conditions. Photoionized plasma is here generated using a 0.5-keV Planckian x-ray source created by means of a laser-driven implosion. The measured x-ray spectrum from the photoionized silicon plasma resembles those observed from the binary stars Cygnus X-3 and Vela X-1 with the Chandra x-ray satellite. This demonstrates that an extreme radiation field was produced in the laboratory, however, the theoretical interpretation of the laboratory spectrum significantly contradicts the generally accepted explanations in x-ray astronomy. This model experiment offers a novel test bed for validation and verification of computational codes used in x-ray astronomy.Comment: 5 pages, 4 figures are included. This is the original submitted version of the manuscript to be published in Nature Physic

    Cation-promoted association of a regulatory and target protein is controlled by protein phosphorylation.

    Get PDF
    xiv, 302 hlm, 21 c

    A review of astrophysics experiments on intense lasers

    Get PDF
    Astrophysics has traditionally been pursued at astronomical observatories and on theorists’ computers. Observations record images from space, and theoretical models are developed to explain the observations. A component often missing has been the ability to test theories and models in an experimental setting where the initial and final states are well characterized. Intense lasers are now being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental testbeds where theory and modeling can be quantitatively tested against data. We describe here several areas of astrophysics—supernovae, supernova remnants, gamma-ray bursts, and giant planets—where laser experiments are under development to test our understanding of these phenomena. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71013/2/PHPAEN-7-5-1641-1.pd
    • …
    corecore