21 research outputs found

    Constitutive androstane receptor 1 is constitutively bound to chromatin and ‘primed’ for transactivation in hepatocytes

    Get PDF
    The constitutive androstane receptor (CAR) is a xenobiotic sensor expressed in hepatocytes that activates genes involved in drug metabolism, lipid homeostasis, and cell proliferation. Much progress has been made in understanding the mechanism of activation of human CAR by drugs and xenobiotics. However, many aspects of the activation pathway remain to be elucidated. In this report, we have used viral constructs to express human CAR, its splice variants, and mutant CAR forms in hepatocytes from Car-/- mice in vitro and in vivo. We demonstrate CAR expression rescued the ability of Car-/- hepatocytes to respond to a wide range of CAR activators including phenobarbital. Additionally, two major splice isoforms of human CAR, CAR2 and CAR3, were inactive with almost all the agents tested. In contrast to the current model of CAR activation, ectopic CAR1 is constitutively localised in the nucleus and is loaded onto Cyp2b10 gene in the absence of an inducing agent. In studies to elucidate the role of threonine T38 in CAR regulation, we found that the T38D mutant was inactive even in the presence of CAR activators. However, the T38A mutant was activated by CAR inducers, showing that T38 is not essential for CAR activation. Also, using the inhibitor erlotinib, we could not confirm a role for the epidermal growth factor receptor in CAR regulation. Our data suggest that CAR is constitutively bound to gene regulatory regions and is regulated by exogenous agents through a mechanism which involves protein phosphorylation in the nucleus

    Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome.

    Get PDF
    BACKGROUND: Fragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from the loss of function of the fragile X mental retardation 1 (FMR1) gene. The molecular pathways associated with FMR1 epigenetic silencing are still elusive, and their characterization may enhance the discovery of novel therapeutic targets as well as the development of novel clinical biomarkers for disease status. RESULTS: We have deployed customized epigenomic profiling assays to comprehensively map the FMR1 locus chromatin landscape in peripheral mononuclear blood cells (PBMCs) from eight FXS patients and in fibroblast cell lines derived from three FXS patient. Deoxyribonucleic acid (DNA) methylation (5-methylcytosine (5mC)) and hydroxymethylation (5-hydroxymethylcytosine (5hmC)) profiling using methylated DNA immunoprecipitation (MeDIP) combined with a custom FMR1 microarray identifies novel regions of DNA (hydroxy)methylation changes within the FMR1 gene body as well as in proximal flanking regions. At the region surrounding the FMR1 transcriptional start sites, increased levels of 5mC were associated to reciprocal changes in 5hmC, representing a novel molecular feature of FXS disease. Locus-specific validation of FMR1 5mC and 5hmC changes highlighted inter-individual differences that may account for the expected DNA methylation mosaicism observed at the FMR1 locus in FXS patients. Chromatin immunoprecipitation (ChIP) profiling of FMR1 histone modifications, together with 5mC/5hmC and gene expression analyses, support a functional relationship between 5hmC levels and FMR1 transcriptional activation and reveal cell-type specific differences in FMR1 epigenetic regulation. Furthermore, whilst 5mC FMR1 levels positively correlated with FXS disease severity (clinical scores of aberrant behavior), our data reveal for the first time an inverse correlation between 5hmC FMR1 levels and FXS disease severity. CONCLUSIONS: We identify novel, cell-type specific, regions of FMR1 epigenetic changes in FXS patient cells, providing new insights into the molecular mechanisms of FXS. We propose that the combined measurement of 5mC and 5hmC at selected regions of the FMR1 locus may significantly enhance FXS clinical diagnostics and patient stratification

    Loss of Tet1 associated 5-hydroxymethylcytosine is concomitant with aberrant promoter hypermethylation in liver cancer

    Get PDF
    Aberrant hypermethylation of CpG islands (CGI) in human tumors occurs predominantly at repressed genes in the host tissue, but the preceding events driving this phenomenon are poorly understood. In this study, we temporally tracked epigenetic and transcriptomic perturbations which occur in a mouse model of liver carcinogenesis. Hypermethylated CGI events in the model were predicted by enrichment of the DNA modification 5-hydroxymethylcytosine (5hmC) and the histone H3 modification H3K27me3 at silenced promoters in the host tissue. During cancer progression, CGI underwent hypo-hydroxymethylation prior to hypermethylation, whilst retaining H3K27me3. In livers from mice deficient in Tet1, a tumor suppressor involved in cytosine demethylation, we observed a similar loss of promoter core 5hmC, suggesting that reduced Tet1 activity at CGI may contribute to epigenetic dysregulation observed during hepatocarcinogenesis. Consistent with this possibility, mouse liver tumors exhibited reduced Tet1 protein levels. Similar to humans, DNA methylation changes at CGI in mice did not appear to be direct drivers of hepatocellular carcinoma progression, rather, dynamic changes in H3K27me3 promoter deposition correlated strongly with tumor-specific activation and repression of transcription. Overall, our results suggest that loss of promoter-associated 5hmC in liver tumors licenses reprogramming of DNA methylation at silent CGI during progression

    Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    No full text
    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Epigenetic aberrations (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model for non-genotoxic liver carcinogenesis. 4 weeks of PB treatment lead to significant, tissue-specific, PB-mediated transcriptional alterations using expression microarrays and tissue-specific DNA methylation perturbations by MeDIP-array profiling of 17,967 promoter regions and 4,566 intergenic CpG islands. These results showed very limited number of significant anti-correlations between transcriptional and promoter-based DNA methylation perturbations in both liver and kidney yet identified the constitutive androstane receptor (CAR)/pregnane X receptor (PXR) target gene Cyp2b10 as methylated and repressed in untreated liver and hypomethylated and highly expressed following PB treatment. In kidney, Cyp2b10 promoter methylation and gene expression remained unaffected. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our integrated genome-wide profiling data show that PB-induced transcriptional perturbations are generally not linked with broad changes in the DNA methylation status at proximal promoters and suggest a novel function for the drug-inducible CAR/PXR pathway in regulating chromatin architecture of selected target genes. These data support the emerging role of epigenomic profiling in better understanding of mechanisms and identification of biomarkers of non-genotoxic carcinogenesis and in improving drug safety assessment

    Novartis: Genedata Expressionist® for Genomic Profiling used to predict effects of non-genotoxic carcinogens

    No full text
    Drug development efficiency can increase significantly when undesired side effects of drug candidates are detected early in development. Today, less than ten percent of all drug candidates entering clinical studies complete clinical development due to drug safety issues. To identify these issues as early as possible and share research findings with a broad community, Novartis researchers use Genedata Expressionist for Genomic Profiling. Genedata Expressionist creates a novel method for identifying biomarkers that can predict the effects of non-genotoxic carcinogens (NGCs). Moreover, this profiling method enables early detection of drug-induced tumor formation and better safety assessment of drug candidates

    Chromatin dynamics underlying latent responses to xenobiotics

    No full text
    Pleiotropic xenobiotics can trigger dynamic alterations in mammalian chromatin structure and function but many of these are likely non-adverse and simply reflect short-term changes in DNA transactions underlying normal homeostatic, adaptive and protective cellular responses. However, it is plausible that a subset of xenobiotic-induced perturbations of somatic tissue or germline epigenomes result in delayed-onset and long-lasting adverse effects, in particular if they occur during critical stages of growth and development. These could include reprogramming, dedifferentiation, uncontrolled growth, and cumulative toxicity effects through molecular memory of prior xenobiotic exposures or altered susceptibility to subsequent xenobiotic exposures. Here we discuss the current evidence for epigenetic mechanisms underlying latent responses to xenobiotics, including cases where molecular epigenetic changes are prodromal to overt morphologic or functional toxicity phenotypes

    Postdoctoral position to study genomic markers of carcinogenesis

    No full text
    none: this is an ad to be published for a post-doctoral position, as requested by education office

    Regulation of Allergic Responses to Chemicals: Possible Roles of Epigenetic Mechanisms

    No full text
    There is increasing evidence that epigenetic regulation of gene expression plays a pivotal role in the orchestration of immune and allergic responses. Such regulatory mechanisms have potentially important implications for the acquisition of sensitization to chemical and drug allergens, and in determining the vigor, characteristics and longevity of allergic responses. Importantly, the discovery of long-lasting epigenetic alterations in specific immunoregulatory genes provides a mechanistic basis for immune cell memory, and thereby the potential of chemical allergens to influence the subsequent orientation of the adaptive immune system. In this article we consider the implications of epigenetic mechanisms for the development of sensitization to chemical allergens and the form that allergic reactions will take

    Evaluation of 5-methylcytosine and 5-hydroxymethylcytosine as potential biomarkers for characterisation of chemical allergens

    No full text
    Epigenetic regulation of gene expression plays a pivotal role in the orchestration of immune responses. Chemical allergens form two categories: skin sensitizing chemicals associated with allergic contact dermatitis, and chemicals that cause sensitization of the respiratory tract and occupational asthma. In mice these are characterized by different T helper (Th) cell responses. Changes in DNA methylation in particular have been implicated in the in vivo responses to chemical allergy. As such it was hypothesised that differentially methylated regions (DMR) may provide candidates biomarkers of chemical allergy To examine this, mice were exposed to 2,4-dinitrochlorobenzene (DNCB; a contact allergen) or trimellitic anhydride (TMA; a respiratory allergen). DNA from draining lymph nodes was processed for methylated (5mC) and hydroxymethylated (5hmC) DNA immunoprecipitation (MeDIP/hMeDIP) then selected DMR analysed by qPCR. We describe a number of DMRs which, by combined analysis of 5mC and 5hmC, differentiate between responses induced by DNCB and those by TMA. Furthermore, these changes in methylation are specific to the draining lymph node. The Gmpr DMR is suggested as a possible biomarker for contact allergen-induced immune responses; it is characterised by divergent levels of 5mC and 5hmC DNCB-treated mice only. In contrast, the Nwc DMR was characterised by divergent 5mC and 5hmC specifically in response to TMA, highlighting its possible utility as a biomarker for responses induced by chemical respiratory allergens. These data not only represent novel analysis of 5hmC in response to chemical allergy in vivo, but with further investigation, may also provide a possible basis for differentiation between classes of chemical allergens

    Wdr5 is essential for fetal erythropoiesis and hematopoiesis.

    No full text
    WDR5 is a highly conserved protein that performs multiple scaffolding functions in the context of chromatin. However, efforts to understand the function of WDR5 in normal tissues physiologically are quite limited so far. In our study, we explored the function of Wdr5 in erythropoiesis and hematopoiesis by using a hematopoietic-specific Wdr5 knockout mouse model. We found that loss of Wdr5 mediated by Vav-iCre leads to embryonic lethality with defective erythropoiesis. In addition, Wdr5-deficiency completely impairs the hematopoietic stem and progenitor cells function and might alter the immunophenotype of these stem cells and progenitors by decreasing c-Kit expression. Collectively, we identified the pivotal role of Wdr5 in fetal hematopoiesis and erythropoiesis as the de novo findings
    corecore