5,568 research outputs found

    Robust and efficient validation of the linear hexahedral element

    Full text link
    Checking mesh validity is a mandatory step before doing any finite element analysis. If checking the validity of tetrahedra is trivial, checking the validity of hexahedral elements is far from being obvious. In this paper, a method that robustly and efficiently compute the validity of standard linear hexahedral elements is presented. This method is a significant improvement of a previous work on the validity of curvilinear elements. The new implementation is simple and computationally efficient. The key of the algorithm is still to compute B\'ezier coefficients of the Jacobian determinant. We show that only 20 Jacobian determinants are necessary to compute the 27 B\'ezier coefficients. Those 20 Jacobians can be efficiently computed by calculating the volume of 20 tetrahedra. The new implementation is able to check the validity of about 6 million hexahedra per second on one core of a personal computer. Through the paper, all the necessary information is provided that allow to easily reproduce the results, \ie write a simple code that takes the coordinates of 8 points as input and outputs the validity of the hexahedron.Comment: 13 pages, 7 figures. Submitted to the 26th International Meshing Roundtable conference. V2: removed Appendix "Derivatives of the Jacobian determinant of a linear hexahedron" and update acknowledgements. V3: modifications in abstract, introduction and conclusio

    Identifying combinations of tetrahedra into hexahedra: a vertex based strategy

    Full text link
    Indirect hex-dominant meshing methods rely on the detection of adjacent tetrahedra an algorithm that performs this identification and builds the set of all possible combinations of tetrahedral elements of an input mesh T into hexahedra, prisms, or pyramids. All identified cells are valid for engineering analysis. First, all combinations of eight/six/five vertices whose connectivity in T matches the connectivity of a hexahedron/prism/pyramid are computed. The subset of tetrahedra of T triangulating each potential cell is then determined. Quality checks allow to early discard poor quality cells and to dramatically improve the efficiency of the method. Each potential hexahedron/prism/pyramid is computed only once. Around 3 millions potential hexahedra are computed in 10 seconds on a laptop. We finally demonstrate that the set of potential hexes built by our algorithm is significantly larger than those built using predefined patterns of subdivision of a hexahedron in tetrahedral elements.Comment: Preprint submitted to CAD (26th IMR special issue

    L’inspection sur place, ou la transparence des relations internationales (Note)

    Get PDF

    Representing three-dimensional cross fields using 4th order tensors

    Full text link
    This paper presents a new way of describing cross fields based on fourth order tensors. We prove that the new formulation is forming a linear space in R9\mathbb{R}^9. The algebraic structure of the tensors and their projections on \mbox{SO}(3) are presented. The relationship of the new formulation with spherical harmonics is exposed. This paper is quite theoretical. Due to pages limitation, few practical aspects related to the computations of cross fields are exposed. Nevetheless, a global smoothing algorithm is briefly presented and computation of cross fields are finally depicted

    GPU-accelerated discontinuous Galerkin methods on hybrid meshes

    Full text link
    We present a time-explicit discontinuous Galerkin (DG) solver for the time-domain acoustic wave equation on hybrid meshes containing vertex-mapped hexahedral, wedge, pyramidal and tetrahedral elements. Discretely energy-stable formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto (Spectral Element) nodal bases for the hexahedron. Stable timestep restrictions for hybrid meshes are derived by bounding the spectral radius of the DG operator using order-dependent constants in trace and Markov inequalities. Computational efficiency is achieved under a combination of element-specific kernels (including new quadrature-free operators for the pyramid), multi-rate timestepping, and acceleration using Graphics Processing Units.Comment: Submitted to CMAM

    There are 174 Subdivisions of the Hexahedron into Tetrahedra

    Full text link
    This article answers an important theoretical question: How many different subdivisions of the hexahedron into tetrahedra are there? It is well known that the cube has five subdivisions into 6 tetrahedra and one subdivision into 5 tetrahedra. However, all hexahedra are not cubes and moving the vertex positions increases the number of subdivisions. Recent hexahedral dominant meshing methods try to take these configurations into account for combining tetrahedra into hexahedra, but fail to enumerate them all: they use only a set of 10 subdivisions among the 174 we found in this article. The enumeration of these 174 subdivisions of the hexahedron into tetrahedra is our combinatorial result. Each of the 174 subdivisions has between 5 and 15 tetrahedra and is actually a class of 2 to 48 equivalent instances which are identical up to vertex relabeling. We further show that exactly 171 of these subdivisions have a geometrical realization, i.e. there exist coordinates of the eight hexahedron vertices in a three-dimensional space such that the geometrical tetrahedral mesh is valid. We exhibit the tetrahedral meshes for these configurations and show in particular subdivisions of hexahedra with 15 tetrahedra that have a strictly positive Jacobian

    Finding Hexahedrizations for Small Quadrangulations of the Sphere

    Full text link
    This paper tackles the challenging problem of constrained hexahedral meshing. An algorithm is introduced to build combinatorial hexahedral meshes whose boundary facets exactly match a given quadrangulation of the topological sphere. This algorithm is the first practical solution to the problem. It is able to compute small hexahedral meshes of quadrangulations for which the previously known best solutions could only be built by hand or contained thousands of hexahedra. These challenging quadrangulations include the boundaries of transition templates that are critical for the success of general hexahedral meshing algorithms. The algorithm proposed in this paper is dedicated to building combinatorial hexahedral meshes of small quadrangulations and ignores the geometrical problem. The key idea of the method is to exploit the equivalence between quad flips in the boundary and the insertion of hexahedra glued to this boundary. The tree of all sequences of flipping operations is explored, searching for a path that transforms the input quadrangulation Q into a new quadrangulation for which a hexahedral mesh is known. When a small hexahedral mesh exists, a sequence transforming Q into the boundary of a cube is found; otherwise, a set of pre-computed hexahedral meshes is used. A novel approach to deal with the large number of problem symmetries is proposed. Combined with an efficient backtracking search, it allows small shellable hexahedral meshes to be found for all even quadrangulations with up to 20 quadrangles. All 54,943 such quadrangulations were meshed using no more than 72 hexahedra. This algorithm is also used to find a construction to fill arbitrary domains, thereby proving that any ball-shaped domain bounded by n quadrangles can be meshed with no more than 78 n hexahedra. This very significantly lowers the previous upper bound of 5396 n.Comment: Accepted for SIGGRAPH 201
    corecore