5,568 research outputs found
Robust and efficient validation of the linear hexahedral element
Checking mesh validity is a mandatory step before doing any finite element
analysis. If checking the validity of tetrahedra is trivial, checking the
validity of hexahedral elements is far from being obvious. In this paper, a
method that robustly and efficiently compute the validity of standard linear
hexahedral elements is presented. This method is a significant improvement of a
previous work on the validity of curvilinear elements. The new implementation
is simple and computationally efficient. The key of the algorithm is still to
compute B\'ezier coefficients of the Jacobian determinant. We show that only 20
Jacobian determinants are necessary to compute the 27 B\'ezier coefficients.
Those 20 Jacobians can be efficiently computed by calculating the volume of 20
tetrahedra. The new implementation is able to check the validity of about 6
million hexahedra per second on one core of a personal computer. Through the
paper, all the necessary information is provided that allow to easily reproduce
the results, \ie write a simple code that takes the coordinates of 8 points as
input and outputs the validity of the hexahedron.Comment: 13 pages, 7 figures. Submitted to the 26th International Meshing
Roundtable conference. V2: removed Appendix "Derivatives of the Jacobian
determinant of a linear hexahedron" and update acknowledgements. V3:
modifications in abstract, introduction and conclusio
Identifying combinations of tetrahedra into hexahedra: a vertex based strategy
Indirect hex-dominant meshing methods rely on the detection of adjacent
tetrahedra an algorithm that performs this identification and builds the set of
all possible combinations of tetrahedral elements of an input mesh T into
hexahedra, prisms, or pyramids. All identified cells are valid for engineering
analysis. First, all combinations of eight/six/five vertices whose connectivity
in T matches the connectivity of a hexahedron/prism/pyramid are computed. The
subset of tetrahedra of T triangulating each potential cell is then determined.
Quality checks allow to early discard poor quality cells and to dramatically
improve the efficiency of the method. Each potential hexahedron/prism/pyramid
is computed only once. Around 3 millions potential hexahedra are computed in 10
seconds on a laptop. We finally demonstrate that the set of potential hexes
built by our algorithm is significantly larger than those built using
predefined patterns of subdivision of a hexahedron in tetrahedral elements.Comment: Preprint submitted to CAD (26th IMR special issue
Representing three-dimensional cross fields using 4th order tensors
This paper presents a new way of describing cross fields based on fourth
order tensors. We prove that the new formulation is forming a linear space in
. The algebraic structure of the tensors and their projections on
\mbox{SO}(3) are presented. The relationship of the new formulation with
spherical harmonics is exposed. This paper is quite theoretical. Due to pages
limitation, few practical aspects related to the computations of cross fields
are exposed. Nevetheless, a global smoothing algorithm is briefly presented and
computation of cross fields are finally depicted
GPU-accelerated discontinuous Galerkin methods on hybrid meshes
We present a time-explicit discontinuous Galerkin (DG) solver for the
time-domain acoustic wave equation on hybrid meshes containing vertex-mapped
hexahedral, wedge, pyramidal and tetrahedral elements. Discretely energy-stable
formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto
(Spectral Element) nodal bases for the hexahedron. Stable timestep restrictions
for hybrid meshes are derived by bounding the spectral radius of the DG
operator using order-dependent constants in trace and Markov inequalities.
Computational efficiency is achieved under a combination of element-specific
kernels (including new quadrature-free operators for the pyramid), multi-rate
timestepping, and acceleration using Graphics Processing Units.Comment: Submitted to CMAM
There are 174 Subdivisions of the Hexahedron into Tetrahedra
This article answers an important theoretical question: How many different
subdivisions of the hexahedron into tetrahedra are there? It is well known that
the cube has five subdivisions into 6 tetrahedra and one subdivision into 5
tetrahedra. However, all hexahedra are not cubes and moving the vertex
positions increases the number of subdivisions. Recent hexahedral dominant
meshing methods try to take these configurations into account for combining
tetrahedra into hexahedra, but fail to enumerate them all: they use only a set
of 10 subdivisions among the 174 we found in this article.
The enumeration of these 174 subdivisions of the hexahedron into tetrahedra
is our combinatorial result. Each of the 174 subdivisions has between 5 and 15
tetrahedra and is actually a class of 2 to 48 equivalent instances which are
identical up to vertex relabeling. We further show that exactly 171 of these
subdivisions have a geometrical realization, i.e. there exist coordinates of
the eight hexahedron vertices in a three-dimensional space such that the
geometrical tetrahedral mesh is valid. We exhibit the tetrahedral meshes for
these configurations and show in particular subdivisions of hexahedra with 15
tetrahedra that have a strictly positive Jacobian
Finding Hexahedrizations for Small Quadrangulations of the Sphere
This paper tackles the challenging problem of constrained hexahedral meshing.
An algorithm is introduced to build combinatorial hexahedral meshes whose
boundary facets exactly match a given quadrangulation of the topological
sphere. This algorithm is the first practical solution to the problem. It is
able to compute small hexahedral meshes of quadrangulations for which the
previously known best solutions could only be built by hand or contained
thousands of hexahedra. These challenging quadrangulations include the
boundaries of transition templates that are critical for the success of general
hexahedral meshing algorithms.
The algorithm proposed in this paper is dedicated to building combinatorial
hexahedral meshes of small quadrangulations and ignores the geometrical
problem. The key idea of the method is to exploit the equivalence between quad
flips in the boundary and the insertion of hexahedra glued to this boundary.
The tree of all sequences of flipping operations is explored, searching for a
path that transforms the input quadrangulation Q into a new quadrangulation for
which a hexahedral mesh is known. When a small hexahedral mesh exists, a
sequence transforming Q into the boundary of a cube is found; otherwise, a set
of pre-computed hexahedral meshes is used.
A novel approach to deal with the large number of problem symmetries is
proposed. Combined with an efficient backtracking search, it allows small
shellable hexahedral meshes to be found for all even quadrangulations with up
to 20 quadrangles. All 54,943 such quadrangulations were meshed using no more
than 72 hexahedra. This algorithm is also used to find a construction to fill
arbitrary domains, thereby proving that any ball-shaped domain bounded by n
quadrangles can be meshed with no more than 78 n hexahedra. This very
significantly lowers the previous upper bound of 5396 n.Comment: Accepted for SIGGRAPH 201
- …
