2 research outputs found

    Short-course PET based simultaneous integrated boost for locally advanced cervical cancer

    Get PDF
    Background Patients with large, locally advanced cervical cancers (LACC) are challenging to treat. The purpose of this work is to use 18F-FDG PET as planning basis for a short-course simultaneous integrated boost (SIB) in external beam radiotherapy of LACC in order to increase tumour shrinkage and likelihood of local control. Methods Ten previously treated patients with LACC were included, all with pre-treatment FDG PET/CT images available. The FDG avid tumour volume, MTV50, was dose escalated in silico by intensity modulated radiotherapy from the standard 1.8 Gy to 2.8 Gy per fraction for the 10 first fractions; a short-course SIB. For the 18 remaining external fractions, standard pelvic treatment followed to total PTV and MTV50 doses of 50.4 Gy and 60.4 Gy, respectively. Photon and proton treatment were considered using volumetric modulated arc treatment (VMAT) and intensity-modulated proton therapy (IMPT), respectively. All treatment plans were generated using the Eclipse Treatment Planning System (TPS). The impact of tumour shrinkage on doses to organs at risk (OARs) was simulated in the TPS for the SIB plans. Results Dose escalation could be implemented using both VMAT and IMPT, with a D98 ≥ 95 % for MTV50 being achieved in all cases. The sum of the 10 fraction short-course SIB and subsequent 18 standard fractions was compared to the standard non-SIB approach by dose volume histogram (DVH) analysis. Only marginal increase of dose to OARs was found for both modalities and a small further increase estimated from tumour shrinkage. Most DVH parameters showed a mean difference below 2 %. IMPT had, compared to VMAT, reduced OAR doses in the low to intermediate dose range, but showed no additional advantage in dose escalation. Conclusions Planning of dose escalation based on a FDG avid boost volume was here demonstrated feasible. The concept may allow time for enhanced tumour shrinkage before brachytherapy. Thus, this strategy may prove clinically valuable, in particular for patients with large tumours

    Target volume delineation of anal cancer based on magnetic resonance imaging or positron emission tomography

    No full text
    Purpose To compare target volume delineation of anal cancer using positron emission tomography (PET) and magnetic resonance imaging (MRI) with respect to inter-observer and inter-modality variability. Methods Nineteen patients with anal cancer undergoing chemoradiotherapy were prospectively included. Planning computed tomography (CT) images were co-registered with 18F–fluorodexocyglucose (FDG) PET/CT images and T2 and diffusion weighted (DW) MR images. Three oncologists delineated the Gross Tumor Volume (GTV) according to national guidelines and the visible tumor tissue (GTVT). MRI and PET based delineations were evaluated by absolute volumes and Dice similarity coefficients. Results The median volume of the GTVs was 27 and 31 cm3 for PET and MRI, respectively, while it was 6 and 11 cm3 for GTVT. Both GTV and GTVT volumes were highly correlated between delineators (r = 0.90 and r = 0.96, respectively). The median Dice similarity coefficient was 0.75 when comparing the GTVs based on PET/CT (GTVPET) with the GTVs based on MRI and CT (GTVMRI). The median Dice coefficient was 0.56 when comparing the visible tumor volume evaluated by PET (GTVT_PET) with the same volume evaluated by MRI (GTVT_MRI). Margins of 1–2 mm in the axial plane and 7–8 mm in superoinferior direction were required for coverage of the individual observer’s GTVs. Conclusions The rather good agreement between PET- and MRI-based GTVs indicates that either modality may be used for standard target delineation of anal cancer. However, larger deviations were found for GTVT, which may impact future tumor boost strategies
    corecore