12 research outputs found

    Trends in the conduct and reporting of clinical prediction model development and validation: a systematic review

    Get PDF
    OBJECTIVES: This systematic review aims to provide further insights into the conduct and reporting of clinical prediction model development and validation over time. We focus on assessing the reporting of information necessary to enable external validation by other investigators.MATERIALS AND METHODS: We searched Embase, Medline, Web-of-Science, Cochrane Library, and Google Scholar to identify studies that developed 1 or more multivariable prognostic prediction models using electronic health record (EHR) data published in the period 2009-2019.RESULTS: We identified 422 studies that developed a total of 579 clinical prediction models using EHR data. We observed a steep increase over the years in the number of developed models. The percentage of models externally validated in the same paper remained at around 10%. Throughout 2009-2019, for both the target population and the outcome definitions, code lists were provided for less than 20% of the models. For about half of the models that were developed using regression analysis, the final model was not completely presented.DISCUSSION: Overall, we observed limited improvement over time in the conduct and reporting of clinical prediction model development and validation. In particular, the prediction problem definition was often not clearly reported, and the final model was often not completely presented.CONCLUSION: Improvement in the reporting of information necessary to enable external validation by other investigators is still urgently needed to increase clinical adoption of developed models.</p

    COVID outcome prediction in the emergency department (COPE):using retrospective Dutch hospital data to develop simple and valid models for predicting mortality and need for intensive care unit admission in patients who present at the emergency department with suspected COVID-19

    Get PDF
    OBJECTIVES: Develop simple and valid models for predicting mortality and need for intensive care unit (ICU) admission in patients who present at the emergency department (ED) with suspected COVID-19.DESIGN: Retrospective.SETTING: Secondary care in four large Dutch hospitals.PARTICIPANTS: Patients who presented at the ED and were admitted to hospital with suspected COVID-19. We used 5831 first-wave patients who presented between March and August 2020 for model development and 3252 second-wave patients who presented between September and December 2020 for model validation.OUTCOME MEASURES: We developed separate logistic regression models for in-hospital death and for need for ICU admission, both within 28 days after hospital admission. Based on prior literature, we considered quickly and objectively obtainable patient characteristics, vital parameters and blood test values as predictors. We assessed model performance by the area under the receiver operating characteristic curve (AUC) and by calibration plots.RESULTS: Of 5831 first-wave patients, 629 (10.8%) died within 28 days after admission. ICU admission was fully recorded for 2633 first-wave patients in 2 hospitals, with 214 (8.1%) ICU admissions within 28 days. A simple model-COVID outcome prediction in the emergency department (COPE)-with age, respiratory rate, C reactive protein, lactate dehydrogenase, albumin and urea captured most of the ability to predict death. COPE was well calibrated and showed good discrimination for mortality in second-wave patients (AUC in four hospitals: 0.82 (95% CI 0.78 to 0.86); 0.82 (95% CI 0.74 to 0.90); 0.79 (95% CI 0.70 to 0.88); 0.83 (95% CI 0.79 to 0.86)). COPE was also able to identify patients at high risk of needing ICU admission in second-wave patients (AUC in two hospitals: 0.84 (95% CI 0.78 to 0.90); 0.81 (95% CI 0.66 to 0.95)).CONCLUSIONS: COPE is a simple tool that is well able to predict mortality and need for ICU admission in patients who present to the ED with suspected COVID-19 and may help patients and doctors in decision making.</p

    Beyond the average treatment effect:Risk-based approaches to medical decision making

    Get PDF
    The overall aim of this thesis is to explore the use of baseline risk prediction models as the basis for medical decision making. We study and apply methods for the evaluation of treatment effect heterogeneity in both clinical trial data and observational data. More specifically, we systematically review the existing literature on predictive approaches to the evaluation of heterogeneity of treatment effect, develop scalable and reproducible risk-based predictive approaches to the assessment of treatment effect heterogeneity, and apply risk-based methods to better guide medical decisions

    Disease misclassification in electronic healthcare database studies: Deriving validity indices-A contribution from the ADVANCE project.

    Get PDF
    There is a strong and continuously growing interest in using large electronic healthcare databases to study health outcomes and the effects of pharmaceutical products. However, concerns regarding disease misclassification (i.e. classification errors of the disease status) and its impact on the study results are legitimate. Validation is therefore increasingly recognized as an essential component of database research. In this work, we elucidate the interrelations between the true prevalence of a disease in a database population (i.e. prevalence assuming no disease misclassification), the observed prevalence subject to disease misclassification, and the most common validity indices: sensitivity, specificity, positive and negative predictive value. Based on this, we obtained analytical expressions to derive all the validity indices and true prevalence from the observed prevalence and any combination of two other parameters. The analytical expressions can be used for various purposes. Most notably, they can be used to obtain an estimate of the observed prevalence adjusted for outcome misclassification from any combination of two validity indices and to derive validity indices from each other which would otherwise be difficult to obtain. To allow researchers to easily use the analytical expressions, we additionally developed a user-friendly and freely available web-application

    Estimating individualized treatment effects from randomized controlled trials: a simulation study to compare risk-based approaches

    Get PDF
    Abstract Background Baseline outcome risk can be an important determinant of absolute treatment benefit and has been used in guidelines for “personalizing” medical decisions. We compared easily applicable risk-based methods for optimal prediction of individualized treatment effects. Methods We simulated RCT data using diverse assumptions for the average treatment effect, a baseline prognostic index of risk, the shape of its interaction with treatment (none, linear, quadratic or non-monotonic), and the magnitude of treatment-related harms (none or constant independent of the prognostic index). We predicted absolute benefit using: models with a constant relative treatment effect; stratification in quarters of the prognostic index; models including a linear interaction of treatment with the prognostic index; models including an interaction of treatment with a restricted cubic spline transformation of the prognostic index; an adaptive approach using Akaike’s Information Criterion. We evaluated predictive performance using root mean squared error and measures of discrimination and calibration for benefit. Results The linear-interaction model displayed optimal or close-to-optimal performance across many simulation scenarios with moderate sample size (N = 4,250; ~ 785 events). The restricted cubic splines model was optimal for strong non-linear deviations from a constant treatment effect, particularly when sample size was larger (N = 17,000). The adaptive approach also required larger sample sizes. These findings were illustrated in the GUSTO-I trial. Conclusions An interaction between baseline risk and treatment assignment should be considered to improve treatment effect predictions

    Individualized treatment effect was predicted best by modeling baseline risk in interaction with treatment assignment

    Full text link
    Objective: To compare different risk-based methods for optimal prediction of treatment effects. Methods: We simulated RCT data using diverse assumptions for the average treatment effect, a baseline prognostic index of risk (PI), the shape of its interaction with treatment (none, linear, quadratic or non-monotonic), and the magnitude of treatment-related harms (none or constant independent of the PI). We predicted absolute benefit using: models with a constant relative treatment effect; stratification in quarters of the PI; models including a linear interaction of treatment with the PI; models including an interaction of treatment with a restricted cubic spline (RCS) transformation of the PI; an adaptive approach using Akaike's Information Criterion. We evaluated predictive performance using root mean squared error and measures of discrimination and calibration for benefit. Results: The linear-interaction model displayed optimal or close-to-optimal performance across many simulation scenarios with moderate sample size (N=4,250 patients; ~ 785 events). The RCS-model was optimal for strong non-linear deviations from a constant treatment effect, particularly when sample size was larger (N=17,000). The adaptive approach also required larger sample sizes. These findings were illustrated in the GUSTO-I trial. Conclusion: An interaction between baseline risk and treatment assignment should be considered to improve treatment effect predictions

    Use of unstructured text in prognostic clinical prediction models: a systematic review

    Get PDF
    OBJECTIVE: This systematic review aims to assess how information from unstructured text is used to develop and validate clinical prognostic prediction models. We summarize the prediction problems and methodological landscape and determine whether using text data in addition to more commonly used structured data improves the prediction performance. MATERIALS AND METHODS: We searched Embase, MEDLINE, Web of Science, and Google Scholar to identify studies that developed prognostic prediction models using information extracted from unstructured text in a data-driven manner, published in the period from January 2005 to March 2021. Data items were extracted, analyzed, and a meta-analysis of the model performance was carried out to assess the added value of text to structured-data models. RESULTS: We identified 126 studies that described 145 clinical prediction problems. Combining text and structured data improved model performance, compared with using only text or only structured data. In these studies, a wide variety of dense and sparse numeric text representations were combined with both deep learning and more traditional machine learning methods. External validation, public availability, and attention for the explainability of the developed models were limited. CONCLUSION: The use of unstructured text in the development of prognostic prediction models has been found beneficial in addition to structured data in most studies. The text data are source of valuable information for prediction model development and should not be neglected. We suggest a future focus on explainability and external validation of the developed models, promoting robust and trustworthy prediction models in clinical practice

    COVID outcome prediction in the emergency department (COPE): Using retrospective Dutch hospital data to develop simple and valid models for predicting mortality and need for intensive care unit admission in patients who present at the emergency department with suspected COVID-19

    No full text
    Objectives Develop simple and valid models for predicting mortality and need for intensive care unit (ICU) admission in patients who present at the emergency department (ED) with suspected COVID-19. Design Retrospective. Setting Secondary care in four large Dutch hospitals. Participants Patients who presented at the ED and were admitted to hospital with suspected COVID-19. We used 5831 first-wave patients who presented between March and August 2020 for model development and 3252 second-wave patients who presented between September and December 2020 for model validation. Outcome measures We developed separate logistic regression models for in-hospital death and for need for ICU admission, both within 28 days after hospital admission. Based on prior literature, we considered quickly and objectively obtainable patient characteristics, vital parameters and blood test values as predictors. We assessed model performance by the area under the receiver operating characteristic curve (AUC) and by calibration plots. Results Of 5831 first-wave patients, 629 (10.8%) died within 28 days after admission. ICU admission was fully recorded for 2633 first-wave patients in 2 hospitals, with 214 (8.1%) ICU admissions within 28 days. A simple model - COVID outcome prediction in the emergency department (COPE) - with age, respiratory rate, C reactive protein, lactate dehydrogenase, albumin and urea captured most of the ability to predict death. COPE was well calibrated and showed good discrimination for mortality in second-wave patients (AUC in four hospitals: 0.82 (95% CI 0.78 to 0.86); 0.82 (95% CI 0.74 to 0.90); 0.79 (95% CI 0.70 to 0.88); 0.83 (95% CI 0.79 to 0.86)). COPE was also able to identify patients at high risk of needing ICU admission in second-wave patients (AUC in two hospitals: 0.84 (95% CI 0.78 to 0.90); 0.81 (95% CI 0.66 to 0.95)). Conclusions COPE is a simple tool that is well able to predict mortality and need for ICU admission in patients who present to the ED with suspected COVID-19 and may help patients and doctors in decision making
    corecore