2 research outputs found

    Catalytic Properties of Alumina-Supported Ruthenium, Platinum, and Cobalt Nanoparticles towards the Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone

    Get PDF
    A series of metal-loaded (Ru, Pt, Co) alumina catalysts were evaluated for the catalytic oxidation of cyclohexane using tertbutylhydroperoxide (TBHP) as oxidant and acetonitrile or acetic acid as solvent. These materials were prepared by the impregnation method and then characterized by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), H2 chemisorption, Fourier Transformed Infrared Spectroscopy (FTIR), High-Resolution Transmission Electron Microscopy (HRTEM), and X-ray Diffraction (XRD). All the prepared materials acted as efficient catalysts. Among them, Ru/Al2O3 was found to have the best catalytic activity with enhanced cyclohexane conversion of 36 %, selectivity to cyclohexanol and cyclohexanone of 96 % (57.6 mmol), and cyclohexane turnover frequency (TOF) of 288 h-1. Copyright © 2018 BCREC Group. All rights reservedReceived: 26th May 2017; Revised: 17th July 2017; Accepted: 18th July 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018How to Cite: Rekkab-Hammoumraoui, I., Choukchou-Braham, A. (2018). Catalytic Properties of Alumina-Supported Ruthenium, Platinum, and Cobalt Nanoparticles towards the Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone. Bulletin of Chemical Reaction Engineering & Catalysis, 13(1): 24-36 (doi:10.9767/bcrec.13.1.1226.24-35)

    Ruthenium-doped Titania-pillared Clay for The Selective Catalytic Oxidation of Cyclohexene: Influence of Ru Loading

    Get PDF
    A series of ruthenium-based catalysts supported on acid-activated montmorillonite (PILC) and interspersed with titanium (Ru/Ti-PILCs) were prepared with various amounts of ruthenium. Their catalytic performances in the selective oxidation of cyclohexene, using tert-butylhydroperoxide (TBHP) as oxidant were checked. The clay structure modification by acid activation and impregnation of transition metals resulted in an enhanced Lewis and Bronsted acidities. The Ru/Ti-PILCs materials were characterized using X-ray diffraction (XRD), surface area and pore volume measurements, surface acidity followed by Fourier transform infrared (FTIR) spectroscopy, chemical analysis, and Scanning Electron Microscopy (SEM). It was found that all catalysts can selectively oxidize cyclohexene through allylic oxidation leading mainly to 2-cyclohexene-1-one (Enone) as the major product, and 2-cyclohexene-1-ol (Enol) as secondary product. With the 5 %Ru/Ti-PILC, it was possible to reach 59 % cyclohexene total conversion, and 87 % selectivity into 2-cyclohexene-1-one and 13 % selectivity into 2-cyclohexene-1-ol.
    corecore