57 research outputs found
Towards Adaptive Subspace Detection in Heterogeneous Environment
In this paper, we aim to take one step forward to the scenario where an
adaptive subspace detection framework is required to detect subspace signals in
non-stationary environments. Despite the fact that this scenario is more
realistic, the existing studies in detection theory mostly rely on homogeneous,
or partially homogeneous assumptions in the environments for their design
process meaning that the covariance matrices of primary and secondary datasets
are exactly the same or different up to a scale factor. In this study, we allow
some partial information of the train covariance matrix to be shared with the
primary dataset, but the covariance matrix in the primary set can be entirely
different in the structure. This is particularly true in radar systems where
the secondary set is collected in distinct spatial and time zones. We design a
Generalized Likelihood Ratio Test (GLRT) based detector where the noise is
multivariate Gaussian and the subspace interference is assumed to be known. The
simulation results reveal the superiority of the proposed approach in
comparison with conventional detectors for such a realistic and general
scenario
Evolution of the Sasanian defences of the Gorgan Plain
Aucune région du monde antique ne possède une concentration de fortifications militaires semblable à celle de la plaine de Gorgan. C’est aussi ici que nous trouvons la plus longue barrière linéaire renforcée de forts du monde de l’Antiquité tardive. Exception faite des forteresses urbaines, l’infrastructure militaire sassanide éclipse celle de l’État romain tardif. Cet article retrace l’évolution de la construction des infrastructures militaires depuis l’émergence soudaine des fortifications géométriques à la fin du ive ou au début du ve siècle jusqu’à leur abandon dans la première moitié du viie siècle. L’essor initial peut avoir été le résultat d’une pression hostile croissante, dans le nord et le nord-est de l’empire, à partir de la fin du ive siècle. La construction de fortifications a atteint son apogée au ve siècle, mais c’est au vie siècle que les forts du mur de Gorgan construits au ve siècle ont peut-être été occupés le plus densément. Le système a été maintenu jusqu’au viie siècle, bien qu’un certain nombre de fortifications dans l’arrière-pays ont vraisemblablement été abandonnées avant, et il n’y a pas encore de preuves de la construction de nouvelles installations dans les dernières décennies de la domination sassanide. Cet investissement massif a non seulement protégé la plaine de Gorgan mais aussi formé l’épine dorsale des défenses sassanides, vitales pour protéger le coeur de l’empire. Il a par ailleurs permis à l’empire de lancer des opérations militaires sur d’autres frontières
Box It to Bind It: Unified Layout Control and Attribute Binding in T2I Diffusion Models
While latent diffusion models (LDMs) excel at creating imaginative images,
they often lack precision in semantic fidelity and spatial control over where
objects are generated. To address these deficiencies, we introduce the
Box-it-to-Bind-it (B2B) module - a novel, training-free approach for improving
spatial control and semantic accuracy in text-to-image (T2I) diffusion models.
B2B targets three key challenges in T2I: catastrophic neglect, attribute
binding, and layout guidance. The process encompasses two main steps: i) Object
generation, which adjusts the latent encoding to guarantee object generation
and directs it within specified bounding boxes, and ii) attribute binding,
guaranteeing that generated objects adhere to their specified attributes in the
prompt. B2B is designed as a compatible plug-and-play module for existing T2I
models, markedly enhancing model performance in addressing the key challenges.
We evaluate our technique using the established CompBench and TIFA score
benchmarks, demonstrating significant performance improvements compared to
existing methods. The source code will be made publicly available at
https://github.com/nextaistudio/BoxIt2BindIt
Transformers in Small Object Detection: A Benchmark and Survey of State-of-the-Art
Transformers have rapidly gained popularity in computer vision, especially in
the field of object recognition and detection. Upon examining the outcomes of
state-of-the-art object detection methods, we noticed that transformers
consistently outperformed well-established CNN-based detectors in almost every
video or image dataset. While transformer-based approaches remain at the
forefront of small object detection (SOD) techniques, this paper aims to
explore the performance benefits offered by such extensive networks and
identify potential reasons for their SOD superiority. Small objects have been
identified as one of the most challenging object types in detection frameworks
due to their low visibility. We aim to investigate potential strategies that
could enhance transformers' performance in SOD. This survey presents a taxonomy
of over 60 research studies on developed transformers for the task of SOD,
spanning the years 2020 to 2023. These studies encompass a variety of detection
applications, including small object detection in generic images, aerial
images, medical images, active millimeter images, underwater images, and
videos. We also compile and present a list of 12 large-scale datasets suitable
for SOD that were overlooked in previous studies and compare the performance of
the reviewed studies using popular metrics such as mean Average Precision
(mAP), Frames Per Second (FPS), number of parameters, and more. Researchers can
keep track of newer studies on our web page, which is available at
\url{https://github.com/arekavandi/Transformer-SOD}
- …