3 research outputs found

    Coregulated human globin genes are frequently in spatial proximity when active

    Get PDF
    The organization of genes within the nucleus may influence transcription. We have analyzed the nuclear positioning of the coordinately regulated α- and β-globin genes and show that the gene-dense chromatin surrounding the human α-globin genes is frequently decondensed, independent of transcription. Against this background, we show the frequent juxtaposition of active α- and β-globin genes and of homologous α-globin loci that occurs at nuclear speckles and correlates with transcription. However, we did not see increased colocalization of signals, which would be expected with direct physical interaction. The same degree of proximity does not occur between human β-globin genes or between murine globin genes, which are more constrained to their chromosome territories. Our findings suggest that the distribution of globin genes within erythroblast nuclei is the result of a self-organizing process, involving transcriptional status, diffusional ability of chromatin, and physical interactions with nuclear proteins, rather than a directed form of higher-order control

    A biophysical model for transcription factories

    Get PDF
    Summary Transcription factories are nuclear domains where gene transcription takes place although the molecular basis for their formation and maintenance are unknown. In this study, we explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories. We found that transcriptional active chromatin contains modifications like histone H4 acetylated at Lysine 16 (H4K16ac). Single fibre analysis showed that this modification spans the entire body of the gene. Furthermore, H4K16ac genes cluster in regions up to 500 Kb alternating active and inactive chromatin. The introduction of H4K16ac in chromatin induces stiffness in the chromatin fibre. The result of this change in flexibility is that chromatin could behave like a multi-block copolymer with repetitions of stiff-flexible (active-inactive chromatin) components. Copolymers with such structure self-organize through spontaneous phase separation into microdomains. Consistent with such model H4K16ac chromatin form foci that associates with nascent transcripts. We propose that transcription factories are the result of the spontaneous concentration of H4K16ac chromatin that are in proximity, mainly in cis.To: Ministerio de Economia y Competitividad, (Spain) (Grant number: BFU2009-10792) and The Medical Research Council (UK), for supporting this work. We also thank Fundação Ciência e Tecnologia, Portugal for funding RPN.Peer Reviewe
    corecore