39 research outputs found

    Promoter effect on the reduction behavior of wuestite-based catalysts for ammonia synthesis

    Get PDF
    Ammonia synthesis remains one of the most important catalytic processes since it enables efficient hydrogen storage and provides the basis for the production of fertilizers. Herein, complementary bulk and local analytical techniques were combined to investigate the effect of selected promoters (Al, K, Ca) on the reduction of wuestite into α-iron and their catalytic performance for ammonia synthesis. The use of promoters appears to have a positive effect on the wuestite-derived catalyst in ammonia synthesis. The promoters seemingly act as a binder for wuestite grains and impede the reduction and disproportionation events of wuestite precursors resulting in an increased catalytic performance. This effect is associated with an increase of surface area and mesoporosity. The study delivers new insights into the interplay of structure and promoters in wuestite-based catalysts

    Practical assessment on the run – iPads as an effective mobile and paperless tool in physical education and teaching

    Get PDF
    This paper investigates the use of iPads in the assessment of predominantly second year Bachelor of Education (Primary/Early Childhood) pre-service teachers undertaking a physical education and health unit. Within this unit, practical assessment tasks are graded by tutors in a variety of indoor and outdoor settings. The main barriers for the lecturer or tutor for effective assessment in these contexts include limited time to assess and the provision of explicit feedback for large numbers of students, complex assessment procedures, overwhelming record-keeping and assessing students without distracting from the performance being presented. The purpose of this pilot study was to investigate whether incorporating mobile technologies such as iPads to access online rubrics within the Blackboard environment would enhance and simplify the assessment process. Results from the findings indicate that using iPads to access online rubrics was successful in streamlining the assessment process because it provided pre-service teachers with immediate and explicit feedback. In addition, tutors experienced a reduction in the amount of time required for the same workload by allowing quicker forms of feedback via the iPad dictation function. These outcomes have future implications and potential for mobile paperless assessment in other disciplines such as health, environmental science and engineering

    Catalyst poisoning in the conversion of CO and N

    No full text
    Pt4- catalyses the conversion of CO and N2O to CO2 and N2 in the gas phase, as observed by Fourier transform ion cyclotron (FT-ICR) mass spectrometry. The partial pressures of CO and N2O determine the extent of poisoning and the turnover numbers that can be achieved. The catalytic conversion terminates as soon as two CO are adsorbed on the cluster. With N2O, the reactivity of Pt4O2- and Pt4O3- is reduced to 41% and 34% compared to Pt4O-, respectively, and with Pt4O4- this value is reduced to 1%. In contrast, Pt4+ shows no apparent catalytic activity. Density functional theory calculations of Pt4+/- with CO and N2O adsorbates reveal significantly different stabilities of the reaction intermediates for the different charge states

    Modeling of ACTN4-based podocytopathy using Drosophila nephrocytes

    No full text
    INTRODUCTION: Genetic disorders are among the most prevalent causes leading to progressive glomerular disease and, ultimately, end-stage renal disease in children and adolescents. Identification of underlying genetic causes is indispensable for targeted treatment strategies and counseling of affected patients and their families. METHODS: Here, we report a boy who presented at four years of age with proteinuria and biopsy-proven focal segmental glomerulosclerosis that was temporarily responsive to treatment with Ciclosporin A. Molecular genetic testing identified a novel mutation in alpha-actinin-4 (p.M240T). We describe a feasible and efficient experimental approach to test its pathogenicity by combining in silico, in vitro, and in vivo analyses. RESULTS: The de novo p.M240T mutation led to decreased alpha-Actinin-4 stability as well as protein mislocalization and actin cytoskeleton rearrangements. Transgenic expression of wild-type human alpha-Actinin-4 in Drosophila melanogaster nephrocytes was able to ameliorate phenotypes associated with the knockdown of endogenous Actinin. In contrast, p.M240T, as well as other established disease variants p.W59R and p.K255E, failed to rescue these phenotypes, underlining the pathogenicity of the novel alpha-Actinin-4 variant. CONCLUSION: Our data highligh that the newly identified alpha-actinin-4 mutation indeed encodes for a disease-causing variant of the protein and promote the Drosophila model as a simple and convenient tool to study monogenic kidney disease in vivo

    Gut bacterial dysbiosis and instability is associated with the onset of complications and mortality in COVID-19.

    No full text
    There is a growing debate about the involvement of the gut microbiome in COVID-19, although it is not conclusively understood whether the microbiome has an impact on COVID-19, or vice versa, especially as analysis of amplicon data in hospitalized patients requires sophisticated cohort recruitment and integration of clinical parameters. Here, we analyzed fecal and saliva samples from SARS-CoV-2 infected and post COVID-19 patients and controls considering multiple influencing factors during hospitalization. 16S rRNA gene sequencing was performed on fecal and saliva samples from 108 COVID-19 and 22 post COVID-19 patients, 20 pneumonia controls and 26 asymptomatic controls. Patients were recruited over the first and second corona wave in Germany and detailed clinical parameters were considered. Serial samples per individual allowed intra-individual analysis. We found the gut and oral microbiota to be altered depending on number and type of COVID-19-associated complications and disease severity. The occurrence of individual complications was correlated with low-risk (e.g., Faecalibacterium prausznitzii) and high-risk bacteria (e.g., Parabacteroides ssp.). We demonstrated that a stable gut bacterial composition was associated with a favorable disease progression. Based on gut microbial profiles, we identified a model to estimate mortality in COVID-19. Gut microbiota are associated with the occurrence of complications in COVID-19 and may thereby influencing disease severity. A stable gut microbial composition may contribute to a favorable disease progression and using bacterial signatures to estimate mortality could contribute to diagnostic approaches. Importantly, we highlight challenges in the analysis of microbial data in the context of hospitalization
    corecore