21 research outputs found

    Untersuchungen zu zwei genregulatorischen Elementen: uORFs im zellulären Stressmodell und microRNAs bei Triple-negativem Brust-, sowie Darmkrebs und Sepsis

    Get PDF
    Die vorliegende Habilitationsarbeit beschäftigte sich mit zwei Arten genregulatorisch wirksamer Elemente, uORFs und miRNAs, bei verschiedenen pathophysiologischen Zuständen. Zum einen wurden in der 5’-UTR liegende uORFs des Cannabinoid- sowie des Glukokortikoid- und Mineralo-kortikoidrezeptors in einem Stressmodell auf ihre Funktionalität untersucht. Zum anderen wurden sowohl in Triple negativen Brustkrebszelllinien, als auch bei Kolonkarzinom- und Sepsispatienten mit besonderem Augenmerk auf vesikuläre miRNAs (exmiRNAs), krankheitsspezifische miRNA-Profile erstellt, die als prognostische und/oder diagnostische Biomarker bei diesen kritisch kranken Patientengruppen dienen können. Für die miRNA-Analysen aus ECVs des Bluts bedurfte es zu-nächst einer methodischen Optimierung der ECV-Gewinnung um ein schnelles, klinisch praktikables Verfahren zu erhalten, das eine bestmögliche Extraktion und Analyse des ECV-miRNA-Profils unter klinischen Bedingungen erlaubt

    Untersuchungen zu zwei genregulatorischen Elementen: uORFs im zellulären Stressmodell und microRNAs bei Triple-negativem Brust-, sowie Darmkrebs und Sepsis

    Get PDF
    Die vorliegende Habilitationsarbeit beschäftigte sich mit zwei Arten genregulatorisch wirksamer Elemente, uORFs und miRNAs, bei verschiedenen pathophysiologischen Zuständen. Zum einen wurden in der 5’-UTR liegende uORFs des Cannabinoid- sowie des Glukokortikoid- und Mineralo-kortikoidrezeptors in einem Stressmodell auf ihre Funktionalität untersucht. Zum anderen wurden sowohl in Triple negativen Brustkrebszelllinien, als auch bei Kolonkarzinom- und Sepsispatienten mit besonderem Augenmerk auf vesikuläre miRNAs (exmiRNAs), krankheitsspezifische miRNA-Profile erstellt, die als prognostische und/oder diagnostische Biomarker bei diesen kritisch kranken Patientengruppen dienen können. Für die miRNA-Analysen aus ECVs des Bluts bedurfte es zu-nächst einer methodischen Optimierung der ECV-Gewinnung um ein schnelles, klinisch praktikables Verfahren zu erhalten, das eine bestmögliche Extraktion und Analyse des ECV-miRNA-Profils unter klinischen Bedingungen erlaubt

    Kidney cancer characteristics and genotype-phenotype-correlations in Birt-Hogg-Dube syndrome

    Get PDF
    Birt-Hogg-Dube syndrome (BHDS) is a genetic tumor syndrome characterized by lung cysts, pneumothorax, fibrofolliculomas and renal cell cancer. The diagnosis of BHDS is usually considered if kidney cancer occurs before age 50 years, is multifocal and/or bilateral or of the oncocytoma/hybrid oncocytoma-chromophobe type. Using a sample of 50 BHDS families with a total of 178 patients we analyzed how many kidney cancer patients fulfilled one or more of these criteria. Furthermore, we addressed the question if genotype-phenotype-correlations exist that can be used for risk stratification. Renal cell cancer occurred in 34/178 (19.1%) patients, and the reported male bias was not observed. Furthermore, most kidney malignancies occurred after the age of 50 years. Thus, the majority of tumors did not show the typical hallmarks of BHDS. A below-average tumor frequency (17.2%) was observed for the known mutational hotspot c.1285delC/dupC that was the cause of BHDS in 24% of families. Unexpected was the high tumor frequency (66.7%) associated with mutation c.887C>G within a single family, a finding that merits further exploration

    Detection of Atherosclerosis by Small RNA-Sequencing Analysis of Extracellular Vesicle Enriched Serum Samples

    Get PDF
    Atherosclerosis can occur throughout the arterial vascular system and lead to various diseases. Early diagnosis of atherosclerotic processes and of individual disease patterns would be more likely to be successful if targeted therapies were available. For this, it is important to find reliable biomarkers that are easily accessible and with little inconvenience for patients. There are many cell culture, animal model or tissue studies that found biomarkers at the microRNA (miRNA) and mRNA level describing atherosclerotic processes. However, little is known about their potential as circulating and liquid biopsy markers in patients. In this study, we examined serum-derived miRNA – profiles from 129 patients and 28 volunteers to identify potential biomarkers. The patients had four different atherosclerotic manifestations: abdominal aneurysm (n = 35), coronary heart disease (n = 34), carotid artery stenosis (n = 24) and peripheral arterial disease (n = 36). The samples were processed with an extracellular vesicle enrichment protocol, total-RNA extraction and small RNA-sequencing were performed. A differential expression analysis was performed bioinformatically to find potentially regulated miRNA biomarkers. Resulting miRNA candidates served as a starting point for an overrepresentation analysis in which relevant target mRNAs were identified. The Gene Ontology database revealed relevant biological functions in relation to atherosclerotic processes. In patients, expression of specific miRNAs changed significantly compared to healthy volunteers; 27 differentially expressed miRNAs were identified. We were able to detect a group-specific miRNA fingerprint: miR-122-5p, miR-2110 and miR-483-5p for abdominal aortic aneurysm, miR-370-3p and miR-409-3p for coronary heart disease, miR-335-3p, miR-381-3p, miR493-5p and miR654-3p for carotid artery stenosis, miR-199a-5p, miR-215-5p, miR-3168, miR-582-3p and miR-769-5p for peripheral arterial disease. The results of the study show that some of the identified miRNAs have already been associated with atherosclerosis in previous studies. Overrepresentation analysis on this data detected biological processes that are clearly relevant for atherosclerosis, its development and progression showing the potential of these miRNAs as biomarker candidates. In a next step, the relevance of these findings on the mRNA level is to be investigated and substantiated

    Extracellular Vesicle Associated miRNAs Regulate Signaling Pathways Involved in COVID-19 Pneumonia and the Progression to Severe Acute Respiratory Corona Virus-2 Syndrome

    Get PDF
    Background: Extracellular vesicles (EVs) are mediators of cell-to-cell communication in inflammatory lung diseases. They function as carriers for miRNAs which regulate mRNA transcripts and signaling pathways after uptake into recipient cells. We investigated whether miRNAs associated with circulating EVs regulate immunologic processes in COVID-19. Methods: We prospectively studied 20 symptomatic patients with COVID-19 pneumonia, 20 mechanically ventilated patients with severe COVID-19 (severe acute respiratory corona virus-2 syndrome, ARDS) and 20 healthy controls. EVs were isolated by precipitation, total RNA was extracted, profiled by small RNA sequencing and evaluated by differential gene expression analysis (DGE). Differentially regulated miRNAs between groups were bioinformatically analyzed, mRNA target transcripts identified and signaling networks constructed, thereby comparing COVID-19 pneumonia to the healthy state and pneumonia to severe COVID-19 ARDS. Results: DGE revealed 43 significantly and differentially expressed miRNAs (25 downregulated) in COVID-19 pneumonia when compared to controls, and 20 miRNAs (15 downregulated) in COVID-19 ARDS patients in comparison to those with COVID-19 pneumonia. Network analysis for comparison of COVID-19 pneumonia to healthy controls showed upregulated miR-3168 (log2FC=2.28, padjusted<0.001), among others, targeting interleukin-6 (IL6) (25.1, 15.2 - 88.2 pg/ml in COVID-19 pneumonia) and OR52N2, an olfactory smell receptor in the nasal epithelium. In contrast, miR-3168 was significantly downregulated in COVID-19 ARDS (log2FC=-2.13, padjusted=0.003) and targeted interleukin-8 (CXCL8) in a completely activated network. Toll-like receptor 4 (TLR4) was inhibited in COVID-19 pneumonia by miR-146a-5p and upregulated in ARDS by let-7e-5p. Conclusion: EV-derived miRNAs might have important regulative functions in the pathophysiology of COVID-19: CXCL8 regulates neutrophil recruitment into the lung causing epithelial damage whereas activated TLR4, to which SARS-CoV-2 spike protein binds strongly, increases cell surface ACE2 expression and destroys type II alveolar cells that secrete pulmonary surfactants; both resulting in pulmonary-capillary leakage and ARDS. These miRNAs may serve as biomarkers or as possible therapeutic targets

    Extensive blood transcriptome analysis reveals cellular signaling networks activated by circulating glycocalyx components reflecting vascular injury in COVID-19

    Get PDF
    BackgroundDegradation of the endothelial protective glycocalyx layer during COVID-19 infection leads to shedding of major glycocalyx components. These circulating proteins and their degradation products may feedback on immune and endothelial cells and activate molecular signaling cascades in COVID-19 associated microvascular injury. To test this hypothesis, we measured plasma glycocalyx components in patients with SARS-CoV-2 infection of variable disease severity and identified molecular signaling networks activated by glycocalyx components in immune and endothelial cells.MethodsWe studied patients with RT-PCR confirmed COVID-19 pneumonia, patients with COVID-19 Acute Respiratory Distress Syndrome (ARDS) and healthy controls (wildtype, n=20 in each group) and measured syndecan-1, heparan sulfate and hyaluronic acid. The in-silico construction of signaling networks was based on RNA sequencing (RNAseq) of mRNA transcripts derived from blood cells and of miRNAs isolated from extracellular vesicles from the identical cohort. Differentially regulated RNAs between groups were identified by gene expression analysis. Both RNAseq data sets were used for network construction of circulating glycosaminoglycans focusing on immune and endothelial cells.ResultsPlasma concentrations of glycocalyx components were highest in COVID-19 ARDS. Hyaluronic acid plasma levels in patients admitted with COVID-19 pneumonia who later developed ARDS during hospital treatment (n=8) were significantly higher at hospital admission than in patients with an early recovery. RNAseq identified hyaluronic acid as an upregulator of TLR4 in pneumonia and ARDS. In COVID-19 ARDS, syndecan-1 increased IL-6, which was significantly higher than in pneumonia. In ARDS, hyaluronic acid activated NRP1, a co-receptor of activated VEGFA, which is associated with pulmonary vascular hyperpermeability and interacted with VCAN (upregulated), a proteoglycan important for chemokine communication.ConclusionsCirculating glycocalyx components in COVID-19 have distinct biologic feedback effects on immune and endothelial cells and result in upregulation of key regulatory transcripts leading to further immune activation and more severe systemic inflammation. These consequences are most pronounced during the early hospital phase of COVID-19 before pulmonary failure develops. Elevated levels of circulating glycocalyx components may early identify patients at risk for microvascular injury and ARDS. The timely inhibition of glycocalyx degradation could provide a novel therapeutic approach to prevent the development of ARDS in COVID-19

    Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis

    Get PDF
    Septic shock is a common medical condition with a mortality approaching 50% where early diagnosis and treatment are of particular importance for patient survival. Novel biomarkers that serve as prompt indicators of sepsis are urgently needed. High-throughput technologies assessing circulating microRNAs represent an important tool for biomarker identification, but the blood-compartment specificity of these miRNAs has not yet been investigated. We characterized miRNA profiles from serum exosomes, total serum and blood cells (leukocytes, erythrocytes, platelets) of sepsis patients by next-generation sequencing and RT-qPCR (n=3x22) and established differences in miRNA expression between blood compartments. In silico analysis was used to identify compartment-specific signalling functions of differentially regulated miRNAs in sepsis-relevant pathways. In septic shock, a total of 77 and 103 miRNAs were down- and up-regulated, respectively. A majority of these regulated miRNAs (14 in serum, 32 in exosomes and 73 in blood cells) had not been previously associated with sepsis. We found a distinctly compartment-specific regulation of miRNAs between sepsis patients and healthy volunteers. Blood cellular miR-199b-5p was identified as a potential early indicator for sepsis and septic shock. miR-125b-5p and miR-26b-5p were uniquely regulated in exosomes and serum, respectively, while one miRNA (miR-27b-3p) was present in all three compartments. The expression of sepsis-associated miRNAs is compartment-specific. Exosome-derived miRNAs contribute significant information regarding sepsis diagnosis and survival prediction and could serve as newly identified targets for the development of novel sepsis biomarkers

    Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing

    Get PDF
    Extracellular vesicles (EVs) are intercellular communicators with key functions in physiological and pathological processes and have recently garnered interest because of their diagnostic and therapeutic potential. The past decade has brought about the development and commercialization of a wide array of methods to isolate EVs from serum. Which subpopulations of EVs are captured strongly depends on the isolation method, which in turn determines how suitable resulting samples are for various downstream applications. To help clinicians and scientists choose the most appropriate approach for their experiments, isolation methods need to be comparatively characterized. Few attempts have been made to comprehensively analyse vesicular microRNAs (miRNAs) in patient biofluids for biomarker studies. To address this discrepancy, we set out to benchmark the performance of several isolation principles for serum EVs in healthy individuals and critically ill patients. Here, we compared five different methods of EV isolation in combination with two RNA extraction methods regarding their suitability for biomarker discovery-focused miRNA sequencing as well as biological characteristics of captured vesicles. Our findings reveal striking method-specific differences in both the properties of isolated vesicles and the ability of associated miRNAs to serve in biomarker research. While isolation by precipitation and membrane affinity was highly suitable for miRNA-based biomarker discovery, methods based on size-exclusion chromatography failed to separate patients from healthy volunteers. Isolated vesicles differed in size, quantity, purity and composition, indicating that each method captured distinctive populations of EVs as well as additional contaminants. Even though the focus of this work was on transcriptomic profiling of EV-miRNAs, our insights also apply to additional areas of research. We provide guidance for navigating the multitude of EV isolation methods available today and help researchers and clinicians make an informed choice about which strategy to use for experiments involving critically ill patients

    Progranulin signaling in sepsis, community-acquired bacterial pneumonia and COVID-19: a comparative, observational study

    Get PDF
    BACKGROUND Progranulin is a widely expressed pleiotropic growth factor with a central regulatory effect during the early immune response in sepsis. Progranulin signaling has not been systematically studied and compared between sepsis, community-acquired pneumonia (CAP), COVID-19 pneumonia and a sterile systemic inflammatory response (SIRS). We delineated molecular networks of progranulin signaling by next-generation sequencing (NGS), determined progranulin plasma concentrations and quantified the diagnostic performance of progranulin to differentiate between the above-mentioned disorders using the established biomarkers procalcitonin (PCT), interleukin-6 (IL-6) and C-reactive protein (CRP) for comparison. METHODS The diagnostic performance of progranulin was operationalized by calculating AUC and ROC statistics for progranulin and established biomarkers in 241 patients with sepsis, 182 patients with SIRS, 53 patients with CAP, 22 patients with COVID-19 pneumonia and 53 healthy volunteers. miRNAs and mRNAs in blood cells from sepsis patients (n = 7) were characterized by NGS and validated by RT-qPCR in an independent cohort (n = 39) to identify canonical gene networks associated with upregulated progranulin at sepsis onset. RESULTS Plasma concentrations of progranulin (ELISA) in patients with sepsis were 57.5 (42.8-84.9, Q25-Q75) ng/ml and significantly higher than in CAP (38.0, 33.5-41.0~ng/ml, p < 0.001), SIRS (29.0, 25.0-35.0~ng/ml, p < 0.001) and the healthy state (28.7, 25.5-31.7~ng/ml, p < 0.001). Patients with COVID-19 had significantly higher progranulin concentrations than patients with CAP (67.6, 56.6-96.0 vs. 38.0, 33.5-41.0~ng/ml, p < 0.001). The diagnostic performance of progranulin for the differentiation between sepsis vs. SIRS (n = 423) was comparable to that of procalcitonin. AUC was 0.90 (95% CI = 0.87-0.93) for progranulin and 0.92 (CI = 0.88-0.96, p = 0.323) for procalcitonin. Progranulin showed high discriminative power to differentiate bacterial CAP from COVID-19 (sensitivity 0.91, specificity 0.94, AUC 0.91 (CI = 0.8-1.0) and performed significantly better than PCT, IL-6 and CRP. NGS and partial RT-qPCR confirmation revealed a transcriptomic network of immune cells with upregulated progranulin and sortilin transcripts as well as toll-like-receptor 4 and tumor-protein 53, regulated by miR-16 and others. CONCLUSIONS Progranulin signaling is elevated during the early antimicrobial response in sepsis and differs significantly between sepsis, CAP, COVID-19 and SIRS. This suggests that progranulin may serve as a novel indicator for the differentiation between these disorders. TRIAL REGISTRATION Clinicaltrials.gov registration number NCT03280576 Registered November 19, 2015

    Delayed diagnosis of Birt-Hogg-Dube syndrome might be aggravated by gender bias

    Get PDF
    Background Birt-Hogg-Dube syndrome is a rare genetic tumor syndrome characterized by renal cell cancer, lung bullae, pneumothorax, and fibrofolliculoma. Patients with such orphan tumor disorders are at risk of not receiving a timely diagnosis. In the present, gender-sensitive study, we analyzed the delay between onset of symptoms and diagnosis of Birt-Hogg-Dube syndrome. Methods Clinical data of 158 patients from 91 unrelated families were collected. FLCN mutation testing was performed in index patients and family members. Findings The occurrence of the first symptom (fibrofolliculoma, pneumothorax or renal cell cancer) was rarely followed by a timely diagnosis of Birt-Hogg-Dube syndrome and did so significantly less often in female (1.3%) compared to male (11.4%) patients (chi-square 6.83, p-value 0.009). Only 17 out of 39 renal cell cancers (7/17 female, 10/22 male patients) were promptly recognized as a symptom of Birt-Hogg-Dube syndrome. Patients in which renal cell cancer was initially not recognized as a symptom of Birt-Hogg-Dube syndrome waited 9.7 years (females SD 9.2, range 1-29) and 8.8 years (males, SD 4.1, range 2-11) for their diagnosis, respectively. Four (three female, one male) patients developed renal cell cancer twice before the genetic tumor syndrome was diagnosed. The delay between fibrofolliculoma or pneumothorax as a first symptom and diagnosis of Birt-Hogg-Dube syndrome was considerable but not significantly different between females and males (18.1/17.19 versus 16.1/18.92 years). Furthermore, 73 patients were only diagnosed due to family history (delay 15.1 years in females and 17.4 years in males). Interpretation The delay between onset of symptoms and diagnosis of Birt-Hogg-Dube syndrome can be substantial and gender-dependent, causing considerable health risks for patients and their families. It is therefore important to create more awareness of Birt-Hogg-Dube syndrome and resolve gender biases in diagnostic work-up. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
    corecore