118 research outputs found

    Mean encounter times for cell adhesion in hydrodynamic flow: analytical progress by dimensional reduction

    Full text link
    For a cell moving in hydrodynamic flow above a wall, translational and rotational degrees of freedom are coupled by the Stokes equation. In addition, there is a close coupling of convection and diffusion due to the position-dependent mobility. These couplings render calculation of the mean encounter time between cell surface receptors and ligands on the substrate very difficult. Here we show for a two-dimensional model system how analytical progress can be achieved by treating motion in the vertical direction by an effective reaction term in the mean first passage time equation for the rotational degree of freedom. The strength of this reaction term can either be estimated from equilibrium considerations or used as a fit parameter. Our analytical results are confirmed by computer simulations and allow to assess the relative roles of convection and diffusion for different scaling regimes of interest.Comment: Reftex, postscript figures include

    Coexistence of dilute and densely packed domains of ligand-receptor bonds in membrane adhesion

    Full text link
    We analyze the stability of micro-domains of ligand-receptor bonds that mediate the adhesion of biological model membranes. After evaluating the effects of membrane fluctuations on the binding affinity of a single bond, we characterize the organization of bonds within the domains by theoretical means. In a large range of parameters, we find the commonly suggested dense packing to be separated by a free energy barrier from a regime in which bonds are sparsely distributed. If bonds are mobile, a coexistence of the two regimes should emerge, which agrees with recent experimental observations.Comment: 6 pages, 6 figures, accepted by EP

    Lateral diffusion of a protein on a fluctuating membrane

    Full text link
    Measurements of lateral diffusion of proteins in a membrane typically assume that the movement of the protein occurs in a flat plane. Real membranes, however, are subject to thermal fluctuations, leading to movement of an inclusion into the third dimension. We calculate the magnitude of this effect by projecting real three-dimensional diffusion onto an effective one on a flat plane. We consider both a protein that is free to diffuse in the membrane and one that also couples to the local curvature. For a freely diffusing inclusion the measured projected diffusion constant is up to 15% smaller than the actual value. Coupling to the curvature enhances diffusion significantly up to a factor of two.Comment: 6 pages, 4 figure

    Diffusion of active tracers in fluctuating fields

    Full text link
    The problem of a particle diffusion in a fluctuating scalar field is studied. In contrast to most studies of advection diffusion in random fields we analyze the case where the particle position is also coupled to the dynamics of the field. Physical realizations of this problem are numerous and range from the diffusion of proteins in fluctuating membranes and the diffusion of localized magnetic fields in spin systems. We present exact results for the diffusion constant of particles diffusing in dynamical Gaussian fields in the adiabatic limit where the field evolution is much faster than the particle diffusion. In addition we compute the diffusion constant perturbatively, in the weak coupling limit where the interaction of the particle with the field is small, using a Kubo-type relation. Finally we construct a simple toy model which can be solved exactly.Comment: 13 pages, 1 figur

    Brownian motion meets Riemann curvature

    Full text link
    The general covariance of the diffusion equation is exploited in order to explore the curvature effects appearing on brownian motion over a d-dimensional curved manifold. We use the local frame defined by the so called Riemann normal coordinates to derive a general formula for the mean-square geodesic distance (MSD) at the short-time regime. This formula is written in terms of O(d)O(d) invariants that depend on the Riemann curvature tensor. We study the n-dimensional sphere case to validate these results. We also show that the diffusion for positive constant curvature is slower than the diffusion in a plane space, while the diffusion for negative constant curvature turns out to be faster. Finally the two-dimensional case is emphasized, as it is relevant for the single particle diffusion on biomembranes.Comment: 16 pages and 3 figure

    Curvature-coupling dependence of membrane protein diffusion coefficients

    Full text link
    We consider the lateral diffusion of a protein interacting with the curvature of the membrane. The interaction energy is minimized if the particle is at a membrane position with a certain curvature that agrees with the spontaneous curvature of the particle. We employ stochastic simulations that take into account both the thermal fluctuations of the membrane and the diffusive behavior of the particle. In this study we neglect the influence of the particle on the membrane dynamics, thus the membrane dynamics agrees with that of a freely fluctuating membrane. Overall, we find that this curvature-coupling substantially enhances the diffusion coefficient. We compare the ratio of the projected or measured diffusion coefficient and the free intramembrane diffusion coefficient, which is a parameter of the simulations, with analytical results that rely on several approximations. We find that the simulations always lead to a somewhat smaller diffusion coefficient than our analytical approach. A detailed study of the correlations of the forces acting on the particle indicates that the diffusing inclusion tries to follow favorable positions on the membrane, such that forces along the trajectory are on average smaller than they would be for random particle positions.Comment: 16 pages, 8 figure

    Curvature correction to the mobility of fluid membrane inclusions

    Get PDF
    For the first time, using rigorous low-Reynolds-number hydrodynamic theory on curved surfaces via a Stokeslet-type approach, we provide a general and concise expression for the leading-order curvature correction to the canonical, planar, Saffman-Delbrück value of the diffusion constant for a small inclusion embedded in an arbitrarily (albeit weakly) curved fluid membrane. In order to demonstrate the efficacy and utility of this wholly general result, we apply our theory to the specific case of calculating the diffusion coefficient of a locally curvature inducing membrane inclusion. By including both the effects of inclusion and membrane elasticity, as well as their respective thermal shape fluctuations, excellent agreement is found with recently published experimental data on the surface tension dependent mobility of membrane bound inclusions

    Spinodal Decomposition in a Binary Polymer Mixture: Dynamic Self Consistent Field Theory and Monte Carlo Simulations

    Full text link
    We investigate how the dynamics of a single chain influences the kinetics of early stage phase separation in a symmetric binary polymer mixture. We consider quenches from the disordered phase into the region of spinodal instability. On a mean field level we approach this problem with two methods: a dynamical extension of the self consistent field theory for Gaussian chains, with the density variables evolving in time, and the method of the external potential dynamics where the effective external fields are propagated in time. Different wave vector dependencies of the kinetic coefficient are taken into account. These early stages of spinodal decomposition are also studied through Monte Carlo simulations employing the bond fluctuation model that maps the chains -- in our case with 64 effective segments -- on a coarse grained lattice. The results obtained through self consistent field calculations and Monte Carlo simulations can be compared because the time, length, and temperature scales are mapped onto each other through the diffusion constant, the chain extension, and the energy of mixing. The quantitative comparison of the relaxation rate of the global structure factor shows that a kinetic coefficient according to the Rouse model gives a much better agreement than a local, i.e. wave vector independent, kinetic factor. Including fluctuations in the self consistent field calculations leads to a shorter time span of spinodal behaviour and a reduction of the relaxation rate for smaller wave vectors and prevents the relaxation rate from becoming negative for larger values of the wave vector. This is also in agreement with the simulation results.Comment: Phys.Rev.E in prin

    Molecular Dynamics Simulations

    Full text link
    A tutorial introduction to the technique of Molecular Dynamics (MD) is given, and some characteristic examples of applications are described. The purpose and scope of these simulations and the relation to other simulation methods is discussed, and the basic MD algorithms are described. The sampling of intensive variables (temperature T, pressure p) in runs carried out in the microcanonical (NVE) ensemble (N= particle number, V = volume, E = energy) is discussed, as well as the realization of other ensembles (e.g. the NVT ensemble). For a typical application example, molten SiO2, the estimation of various transport coefficients (self-diffusion constants, viscosity, thermal conductivity) is discussed. As an example of Non-Equilibrium Molecular Dynamics (NEMD), a study of a glass-forming polymer melt under shear is mentioned.Comment: 38 pages, 11 figures, to appear in J. Phys.: Condens. Matte
    corecore