8,462 research outputs found
The pyroelectric properties of TGS for application in infrared detection
The pyroelectric property of triglycine sulfate and its application in the detection of infrared radiation are described. The detectivities of pyroelectric detectors and other types of infrared detectors are compared. The thermal response of a pyroelectric detector element and the resulting electrical response are derived in terms of the material parameters. The noise sources which limit the sensitivity of pyroelectric detectors are described, and the noise equivalent power for each noise source is given as a function of frequency and detector area
Fermionic functional renormalization group for first-order phase transitions: a mean-field model
First-order phase transitions in many-fermion systems are not detected in the
susceptibility analysis of common renormalization-group (RG) approaches. Here
we introduce a counterterm technique within the functional
renormalization-group (fRG) formalism which allows access to all stable and
metastable configurations. It becomes possible to study symmetry-broken states
which occur through first-order transitions as well as hysteresis phenomena.
For continuous transitions, the standard results are reproduced. As an example,
we study discrete-symmetry breaking in a mean-field model for a commensurate
charge-density wave. An additional benefit of the approach is that away from
the critical temperature for the breaking of discrete symmetries large
interactions can be avoided at all RG scales.Comment: 17 pages, 8 figures. v2 corrects typos, adds references and a
discussion of the literatur
Scanning the critical fluctuations -- application to the phenomenology of the two-dimensional XY-model --
We show how applying field conjugated to the order parameter, may act as a
very precise probe to explore the probability distribution function of the
order parameter. Using this `magnetic-field scanning' on large-scale numerical
simulations of the critical 2D XY-model, we are able to discard the conjectured
double-exponential form of the large-magnetization asymptote.Comment: 4 pages, 4 figure
Physically derived sound synthesis model of a propeller
© 2017 Copyright held by the owner/author(s). A real-time sound synthesis model for propeller sounds is presented. Equations obtained from fluid dynamics and aerodynamics research are utilised to produce authentic propeller-powered aircraft sounds. The result is a physical model in which the geometries of the objects involved are used in sound synthesis calculations. The model operates in real-time making it ideal for integration within a game or virtual reality environment. Comparison with real propeller-powered aircraft sounds indicates that some aspects of real recordings are not replicated by our model. Listening tests suggest that our model performs as well as another synthesis method but is not as plausible as a real recording
Relativistic photoelectron spectra in the ionization of atoms by elliptically polarized light
Relativistic tunnel ionization of atoms by intense, elliptically polarized
light is considered. The relativistic version of the Landau-Dykhne formula is
employed. The general analytical expression is obtained for the relativistic
photoelectron spectra. The most probable angle of electron emission, the
angular distribution near this angle, the position of the maximum and the width
of the energy spectrum are calculated. In the weak field limit we obtain the
familiar non-relativistic results. For the case of circular polarization our
analytical results are in agreement with recent derivations of Krainov [V.P.
Krainov, J. Phys. B, {\bf 32}, 1607 (1999)].Comment: 8 pages, 2 figures, accepted for publication in Journal of Physics
Non-dipole recollision-gated double ionization and observable effects
Using a three-dimensional semiclassical model, we study double ionization for
strongly-driven He fully accounting for magnetic field effects. For linearly
and slightly elliptically polarized laser fields, we show that recollisions and
the magnetic field combined act as a gate. This gate favors more transverse -
with respect to the electric field - initial momenta of the tunneling electron
that are opposite to the propagation direction of the laser field. In the
absence of non-dipole effects, the transverse initial momentum is symmetric
with respect to zero. We find that this asymmetry in the transverse initial
momentum gives rise to an asymmetry in a double ionization observable. Finally,
we show that this asymmetry in the transverse initial momentum of the tunneling
electron accounts for a recently-reported unexpectedly large average sum of the
electron momenta parallel to the propagation direction of the laser field.Comment: Amended the focus of the paper and discussion. 9 pages, 7 figure
Relativistic semiclassical approach in strong-field nonlinear photoionization
Nonlinear relativistic ionization phenomena induced by a strong laser
radiation with elliptically polarization are considered. The starting point is
the classical relativistic action for a free electron moving in the
electromagnetic field created by a strong laser beam. The application of the
relativistic action to the classical barrier-suppression ionization is briefly
discussed. Further the relativistic version of the Landau-Dykhne formula is
employed to consider the semiclassical sub-barrier ionization. Simple
analytical expressions have been found for: (i) the rates of the strong-field
nonlinear ionization including relativistic initial and final state effects;
(ii) the most probable value of the components of the photoelectron final state
momentum; (iii) the most probable direction of photoelectron emission and (iv)
the distribution of the photoelectron momentum near its maximum value.Comment: 13 pages, 3 figures, to be published in Phys. Rev.
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
- …