60 research outputs found

    The volume operator in covariant quantum gravity

    Full text link
    A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In particular, the geometrical observable giving the area of a surface has been shown to be the same as the one in loop quantum gravity. Here we discuss the volume observable. We derive the volume operator in the covariant theory, and show that it matches the one of loop quantum gravity, as does the area. We also reconsider the implementation of the constraints that defines the model: we derive in a simple way the boundary Hilbert space of the theory from a suitable form of the classical constraints, and show directly that all constraints vanish weakly on this space.Comment: 10 pages. Version 2: proof extended to gamma > 1

    Physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory

    Full text link
    A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In this paper we reconsider the implementation of the constraints that defines the model. We define in a simple way the boundary Hilbert space of the theory, introducing a slight modification of the embedding of the SU(2) representations into the SL(2,C) ones. We then show directly that all constraints vanish on this space in a weak sense. The vanishing is exact (and not just in the large quantum number limit.) We also generalize the definition of the volume operator in the spinfoam model to the Lorentzian signature, and show that it matches the one of loop quantum gravity, as does in the Euclidean case.Comment: 11 page

    Spacetime as a Feynman diagram: the connection formulation

    Get PDF
    Spin foam models are the path integral counterparts to loop quantized canonical theories. In the last few years several spin foam models of gravity have been proposed, most of which live on finite simplicial lattice spacetime. The lattice truncates the presumably infinite set of gravitational degrees of freedom down to a finite set. Models that can accomodate an infinite set of degrees of freedom and that are independent of any background simplicial structure, or indeed any a priori spacetime topology, can be obtained from the lattice models by summing them over all lattice spacetimes. Here we show that this sum can be realized as the sum over Feynman diagrams of a quantum field theory living on a suitable group manifold, with each Feynman diagram defining a particular lattice spacetime. We give an explicit formula for the action of the field theory corresponding to any given spin foam model in a wide class which includes several gravity models. Such a field theory was recently found for a particular gravity model [De Pietri et al, hep-th/9907154]. Our work generalizes this result as well as Boulatov's and Ooguri's models of three and four dimensional topological field theories, and ultimately the old matrix models of two dimensional systems with dynamical topology. A first version of our result has appeared in a companion paper [gr-qc\0002083]: here we present a new and more detailed derivation based on the connection formulation of the spin foam models.Comment: 32 pages, 2 figure

    Spacetime states and covariant quantum theory

    Full text link
    In it's usual presentation, classical mechanics appears to give time a very special role. But it is well known that mechanics can be formulated so as to treat the time variable on the same footing as the other variables in the extended configuration space. Such covariant formulations are natural for relativistic gravitational systems, where general covariance conflicts with the notion of a preferred physical-time variable. The standard presentation of quantum mechanics, in turns, gives again time a very special role, raising well known difficulties for quantum gravity. Is there a covariant form of (canonical) quantum mechanics? We observe that the preferred role of time in quantum theory is the consequence of an idealization: that measurements are instantaneous. Canonical quantum theory can be given a covariant form by dropping this idealization. States prepared by non-instantaneous measurements are described by "spacetime smeared states". The theory can be formulated in terms of these states, without making any reference to a special time variable. The quantum dynamics is expressed in terms of the propagator, an object covariantly defined on the extended configuration space.Comment: 20 pages, no figures. Revision: minor corrections and references adde

    The loop-quantum-gravity vertex-amplitude

    Full text link
    Spinfoam theories are hoped to provide the dynamics of non-perturbative loop quantum gravity. But a number of their features remain elusive. The best studied one -the euclidean Barrett-Crane model- does not have the boundary state space needed for this, and there are recent indications that, consequently, it may fail to yield the correct low-energy nn-point functions. These difficulties can be traced to the SO(4) -> SU(2) gauge fixing and the way certain second class constraints are imposed, arguably incorrectly, strongly. We present an alternative model, that can be derived as a bona fide quantization of a Regge discretization of euclidean general relativity, and where the constraints are imposed weakly. Its state space is a natural subspace of the SO(4) spin-network space and matches the SO(3) hamiltonian spin network space. The model provides a long sought SO(4)-covariant vertex amplitude for loop quantum gravity.Comment: 6page

    A proposal for analyzing the classical limit of kinematic loop gravity

    Get PDF
    We analyze the classical limit of kinematic loop quantum gravity in which the diffeomorphism and hamiltonian constraints are ignored. We show that there are no quantum states in which the primary variables of the loop approach, namely the SU(2) holonomies along {\em all} possible loops, approximate their classical counterparts. At most a countable number of loops must be specified. To preserve spatial covariance, we choose this set of loops to be based on physical lattices specified by the quasi-classical states themselves. We construct ``macroscopic'' operators based on such lattices and propose that these operators be used to analyze the classical limit. Thus, our aim is to approximate classical data using states in which appropriate macroscopic operators have low quantum fluctuations. Although, in principle, the holonomies of `large' loops on these lattices could be used to analyze the classical limit, we argue that it may be simpler to base the analysis on an alternate set of ``flux'' based operators. We explicitly construct candidate quasi-classical states in 2 spatial dimensions and indicate how these constructions may generalize to 3d. We discuss the less robust aspects of our proposal with a view towards possible modifications. Finally, we show that our proposal also applies to the diffeomorphism invariant Rovelli model which couples a matter reference system to the Hussain Kucha{\v r} model.Comment: Replaced with substantially revised versio

    The EPRL intertwiners and corrected partition function

    Full text link
    Do the SU(2) intertwiners parametrize the space of the EPRL solutions to the simplicity constraint? What is a complete form of the partition function written in terms of this parametrization? We prove that the EPRL map is injective for n-valent vertex in case when it is a map from SO(3) into SO(3)xSO(3) representations. We find, however, that the EPRL map is not isometric. In the consequence, in order to be written in a SU(2) amplitude form, the formula for the partition function has to be rederived. We do it and obtain a new, complete formula for the partition function. The result goes beyond the SU(2) spin-foam models framework.Comment: RevTex4, 15 pages, 5 figures; theorem of injectivity of EPRL map correcte

    A New Spin Foam Model for 4d Gravity

    Full text link
    Starting from Plebanski formulation of gravity as a constrained BF theory we propose a new spin foam model for 4d Riemannian quantum gravity that generalises the well-known Barrett-Crane model and resolves the inherent to it ultra-locality problem. The BF formulation of 4d gravity possesses two sectors: gravitational and topological ones. The model presented here is shown to give a quantization of the gravitational sector, and is dual to the recently proposed spin foam model of Engle et al. which, we show, corresponds to the topological sector. Our methods allow us to introduce the Immirzi parameter into the framework of spin foam quantisation. We generalize some of our considerations to the Lorentzian setting and obtain a new spin foam model in that context as well.Comment: 40 pages; (v2) published versio

    The linearization of the Kodama state

    Full text link
    We study the question of whether the linearization of the Kodama state around classical deSitter spacetime is normalizable in the inner product of the theory of linearized gravitons on deSitter spacetime. We find the answer is no in the Lorentzian theory. However, in the Euclidean theory the corresponding linearized Kodama state is delta-functional normalizable. We discuss whether this result invalidates the conjecture that the full Kodama state is a good physical state for quantum gravity with positive cosmological constant.Comment: 14 pages, statement on the corresponding Yang-Mills case correcte
    corecore