133 research outputs found

    TRUST: A Computer Program for Variably Saturated Flow in Multidimensional, Deformable Media

    Get PDF
    The computer code, TRUST. provides a versatile tool to solve a wide spectrum of fluid flow problems arising in variably saturated deformable porous media. The governing equations express the conservation of fluid mass in an elemental volume that has a constant volume of solid. Deformation of the skeleton may be nonelastic. Permeability and compressibility coefficients may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may include hysteresis. The code developed by T. N. Narasimhan grew out of the original TRUNP code written by A. L. Edwards. The code uses an integrated finite difference algorithm for numerically solving the governing equation. Narching in time is performed by a mixed explicit-implicit numerical procedure in which the time step is internally controlled. The time step control and related feature in the TRUST code provide an effective control of the potential numerical instabilities that can arise in the course of solving this difficult class of nonlinear boundary value problem. This document brings together the equations, theory, and users manual for the code as well as a sample case with input and output

    Heterozygous frameshift mutation in keratin 5 in a family with Galli-Galli disease

    Get PDF
    BACKGROUND: Reticulate pigmentary disorders include the rare autosomal dominant Galli–Galli disease (GGD) and Dowling–Degos disease (DDD). Clinical diagnosis between some of the subtypes can be difficult due to a degree of overlap between clinical features, therefore analysis at the molecular level may be necessary to confirm the diagnosis. OBJECTIVES: To identify the underlying genetic defect in a 48-year-old Asian-American woman with a clinical diagnosis of GGD. METHODS: Histological analysis was performed on a skin biopsy using haematoxylin–eosin staining. KRT5 (the gene encoding keratin 5) was amplified from genomic DNA and directly sequenced. RESULTS: The patient had a history of pruritus and hyperpigmented erythematous macules and thin papules along the flexor surfaces of her arms, her upper back and neck, axillae and inframammary areas. Hypopigmented macules were seen among the hyperpigmentation. A heterozygous 1-bp insertion mutation in KRT5 (c.38dupG; p.Ser14GlnfsTer3) was identified in the proband. This mutation occurs within the head domain of the keratin 5 protein leading to a frameshift and premature stop codon. CONCLUSIONS: From the histological findings and mutation analysis the individual was identified as having GGD due to haploinsufficiency of keratin 5

    Stochastic Dynamics of Lexicon Learning in an Uncertain and Nonuniform World

    Get PDF
    We study the time taken by a language learner to correctly identify the meaning of all words in a lexicon under conditions where many plausible meanings can be inferred whenever a word is uttered. We show that the most basic form of cross-situational learning - whereby information from multiple episodes is combined to eliminate incorrect meanings - can perform badly when words are learned independently and meanings are drawn from a nonuniform distribution. If learners further assume that no two words share a common meaning, we find a phase transition between a maximally-efficient learning regime, where the learning time is reduced to the shortest it can possibly be, and a partially-efficient regime where incorrect candidate meanings for words persist at late times. We obtain exact results for the word-learning process through an equivalence to a statistical mechanical problem of enumerating loops in the space of word-meaning mappings.Comment: 7 pages, 3 figures. Version 2 contains additional discussion and will appear in Phys. Rev. Let

    Activity of 2-Aryl-2-(3-indolyl)acetohydroxamates Against Drug-Resistant Cancer Cells

    Get PDF
    Many types of tumor, including glioma, melanoma, non-small cell lung, esophageal, head and neck cancer, among others, are intrinsically resistant to apoptosis induction and poorly responsive to current therapies with proapoptotic agents. In addition, tumors often develop multi-drug resistance based on the cellular efflux of chemotherapeutic agents. Thus, novel anticancer agents capable of overcoming these intrinsic or developed tumor resistance mechanisms are urgently needed. We describe a series of 2-aryl-2-(3-indolyl)acetohydroxamic acids, which are active against apoptosis- and multidrug-resistant cancer cells as well as glioblastoma neurosphere stem-like cell cultures derived from patients. Thus, the described compounds serve as a novel chemical scaffold for the development of potentially highly effective clinical cancer drugs

    DNA Adenine Methylation Is Required to Replicate Both Vibrio cholerae Chromosomes Once per Cell Cycle

    Get PDF
    DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated) sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII) of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication

    Model-Based Deconvolution of Cell Cycle Time-Series Data Reveals Gene Expression Details at High Resolution

    Get PDF
    In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure “just-in-time” assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systematic error in the cell synchrony process and variance in the timing of cell division at the level of the single cell. Thus, gene or protein expression data collected from a population of synchronized cells is an inaccurate measure of what occurs in the average single-cell across a cell cycle. Here, we present a general computational method to extract “single-cell”-like information from population-level time-series expression data. This method removes the effects of 1) variance in growth rate and 2) variance in the physiological and developmental state of the cell. Moreover, this method represents an advance in the deconvolution of molecular expression data in its flexibility, minimal assumptions, and the use of a cross-validation analysis to determine the appropriate level of regularization. Applying our deconvolution algorithm to cell cycle gene expression data from the dimorphic bacterium Caulobacter crescentus, we recovered critical features of cell cycle regulation in essential genes, including ctrA and ftsZ, that were obscured in population-based measurements. In doing so, we highlight the problem with using population data alone to decipher cellular regulatory mechanisms and demonstrate how our deconvolution algorithm can be applied to produce a more realistic picture of temporal regulation in a cell

    Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate

    Get PDF
    Background/Objectives: Short-chain fatty acids, produced by microbiome fermentation of carbohydrates, have been linked to a reduction in appetite, body weight and adiposity. However, determining the contribution of central and peripheral mechanisms to these effects has not been possible. Subjects/Methods:C57BL/6 mice fed with either normal or high-fat diet were treated with nanoparticle-delivered acetate, and the effects on metabolism were investigated. Results:In the liver, acetate decreased lipid accumulation and improved hepatic function, as well as increasing mitochondrial efficiency. In white adipose tissue, it inhibited lipolysis and induced 'browning', increasing thermogenic capacity that led to a reduction in body adiposity. Conclusions:This study provides novel insights into the peripheral mechanism of action of acetate, independent of central action, including ‘browning’ and enhancement of hepatic mitochondrial function

    Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-term acetate supplementation reduces neuroglial activation and cholinergic cell loss in a rat model of lipopolysaccharide-induced neuroinflammation. Additionally, a single dose of glyceryl triacetate, used to induce acetate supplementation, increases histone H3 and H4 acetylation and inhibits histone deacetylase activity and histone deacetylase-2 expression in normal rat brain. Here, we propose that the therapeutic effect of acetate in reducing neuroglial activation is due to a reversal of lipopolysaccharide-induced changes in histone acetylation and pro-inflammatory cytokine expression.</p> <p>Methods</p> <p>In this study, we examined the effect of a 28-day-dosing regimen of glyceryl triacetate, to induce acetate supplementation, on brain histone acetylation and interleukin-1β expression in a rat model of lipopolysaccharide-induced neuroinflammation. The effect was analyzed using Western blot analysis, quantitative real-time polymerase chain reaction and enzymic histone deacetylase and histone acetyltransferase assays. Statistical analysis was performed using one-way analysis of variance, parametric or nonparametric when appropriate, followed by Tukey's or Dunn's post-hoc test, respectively.</p> <p>Results</p> <p>We found that long-term acetate supplementation increased the proportion of brain histone H3 acetylated at lysine 9 (H3K9), histone H4 acetylated at lysine 8 and histone H4 acetylated at lysine 16. However, unlike a single dose of glyceryl triacetate, long-term treatment increased histone acetyltransferase activity and had no effect on histone deacetylase activity, with variable effects on brain histone deacetylase class I and II expression. In agreement with this hypothesis, neuroinflammation reduced the proportion of brain H3K9 acetylation by 50%, which was effectively reversed with acetate supplementation. Further, in rats subjected to lipopolysaccharide-induced neuroinflammation, the pro-inflammatory cytokine interleukin-1β protein and mRNA levels were increased by 1.3- and 10-fold, respectively, and acetate supplementation reduced this expression to control levels.</p> <p>Conclusion</p> <p>Based on these results, we conclude that dietary acetate supplementation attenuates neuroglial activation by effectively reducing pro-inflammatory cytokine expression by a mechanism that may involve a distinct site-specific pattern of histone acetylation and histone deacetylase expression in the brain.</p
    corecore