3 research outputs found

    bus, a Bushy Arabidopsis CYP79F1 Knockout Mutant with Abolished Synthesis of Short-Chain Aliphatic Glucosinolates

    No full text
    A new mutant of Arabidopsis designated bus1-1 (for bushy), which exhibited a bushy phenotype with crinkled leaves and retarded vascularization, was characterized. The phenotype was caused by an En-1 insertion in the gene CYP79F1. The deduced protein belongs to the cytochrome P450 superfamily. Because members of the CYP79 subfamily are believed to catalyze the oxidation of amino acids to aldoximes, the initial step in glucosinolate biosynthesis, we analyzed the level of glucosinolates in a CYP79F1 null mutant (bus1-1f) and in an overexpressing plant. Short-chain glucosinolates derived from methionine were completely lacking in the null mutant and showed increased levels in the overexpressing plant, indicating that CYP79F1 uses short-chain methionine derivatives as substrates. In addition, the concentrations of indole-3-ylmethyl-glucosinolate and the content of the auxin indole-3-acetic acid and its precursor indole-3-acetonitrile were increased in the bus1-1f mutant. Our results demonstrate for the first time that the formation of glucosinolates derived from methionine is mediated by CYP79F1 and that knocking out this cytochrome P450 has profound effects on plant growth and development

    bus

    No full text

    AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K(+) influx

    No full text
    Ion channels in roots allow the plant to gain access to nutrients. The composition of the individual ion channels and the functional contribution of different α-subunits is largely unknown. Focusing on K(+)-selective ion channels, we have characterized AtKC1, a new α-subunit from the Arabidopsis shaker-like ion channel family. Promoter-β-glucuronidase (GUS) studies identified AtKC1 expression predominantly in root hairs and root endodermis. Specific antibodies recognized AtKC1 at the plasma membrane. To analyze further the abundance and the functional contribution of the different K(+) channels α-subunits in root cells, we performed real-time reverse transcription–PCR and patch-clamp experiments on isolated root hair protoplasts. Studying all shaker-like ion channel α-subunits, we only found the K(+) inward rectifier AtKC1 and AKT1 and the K(+) outward rectifier GORK to be expressed in this cell type. Akt1 knockout plants essentially lacked inward rectifying K(+) currents. In contrast, inward rectifying K(+) currents were present in AtKC1 knockout plants, but fundamentally altered with respect to gating and cation sensitivity. This indicates that the AtKC1 α-subunit represents an integral component of functional root hair K(+) uptake channels
    corecore