4,664 research outputs found

    New technique for replica symmetry breaking with application to the SK-model at and near T=0

    Full text link
    We describe a novel method which allows the treatment of high orders of replica-symmetry-breaking (RSB) at low temperatures as well as at T=0 directly, without a need for approximations or scaling assumptions. It yields the low temperature order function q(a,T) in the full range 0a<0\leq a <\infty and is complete in the sense that all observables can be calculated from it. The behavior of some observables and the finite RSB theory itself is analyzed as one approaches continuous RSB. The validity and applicability of the traditional continuous formulation is then scrutinized and a new continuous RSB formulation is proposed

    Chromosome condensation in mitosis and meiosis of rye (Secale cereale L.)

    Get PDF
    Structural investigation and morphometry of meiotic chromosomes by scanning electron microscopy (in comparison to light microscopy) of all stages of condensation of meiosis I + II show remarkable differences during chromosome condensation in mitosis and meiosis I of rye (Secale cereale) with respect to initiation, mode and degree of condensation. Mitotic chromosomes condense in a linear fashion, shorten in length and increase moderately in diameter. In contrast, in meiosis I, condensation of chromosomes in length and diameter is a sigmoidal process with a retardation in zygotene and pachytene and an acceleration from diplotene to diakinesis. The basic structural components of mitotic chromosomes of rye are ``parallel fibers{''} and ``chromomeres{''} which become highly compacted in metaphase. Although chromosome architecture in early prophase of meiosis seems similar to mitosis in principle, there is no equivalent stage during transition to metaphase I when chromosomes condense to a much higher degree and show a characteristic ``smooth{''} surface. No indication was found for helical winding of chromosomes either in mitosis or in meiosis. Based on measurements, we propose a mechanism for chromosome dynamics in mitosis and meiosis, which involves three individual processes: (i) aggregation of chromatin subdomains into a chromosome filament, (ii) condensation in length, which involves a progressive increase in diameter and (iii) separation of chromatids. Copyright (C) 2003 S. Karger AG, Basel

    High dispersive and monolithic 100% efficiency grisms

    Full text link
    We present a type of grism, a series combination of transmission grating and prism, in which we reduce the number of diffraction orders and achieve a configuration with very high angular dispersion. The grism can be fabricated from a single dielectric material and requires no metallic or dielectric film layers for high transmission diffraction efficiency. One can reach 100% in the -1st transmission diffraction order and the equal damage threshold as the dielectric bulk material. We realized such an element in fused silica with an efficiency of more then 99%. The bevel backside reflection is reduced by a statistical antireflective structure, so we measured an efficiency of the entire grism of 95% at a single wavelength

    Transition from spot to faculae domination -- An alternate explanation for the dearth of intermediate \textit{Kepler} rotation periods

    Full text link
    The study of stellar activity cycles is crucial to understand the underlying dynamo and how it causes activity signatures such as dark spots and bright faculae. We study the appearance of activity signatures in contemporaneous photometric and chromospheric time series. Lomb-Scargle periodograms are used to search for cycle periods present in both time series. To emphasize the signature of the activity cycle we account for rotation-induced scatter in both data sets by fitting a quasi-periodic Gaussian process model to each observing season. After subtracting the rotational variability, cycle amplitudes and the phase difference between the two time series are obtained by fitting both time series simultaneously using the same cycle period. We find cycle periods in 27 of the 30 stars in our sample. The phase difference between the two time series reveals that the variability in fast rotating active stars is usually in anti-phase, while the variability of slowly rotating inactive stars is in phase. The photometric cycle amplitudes are on average six times larger for the active stars. The phase and amplitude information demonstrates that active stars are dominated by dark spots, whereas less active stars are dominated by bright faculae. We find the transition from spot to faculae domination at the Vaughan-Preston gap, and around a Rossby number equal to one. We conclude that faculae are the dominant ingredient of stellar activity cycles at ages >2.55 Gyr. The data further suggest that the Vaughan-Preston gap can not explain the previously detected dearth of Kepler rotation periods between 15-25 days. Nevertheless, our results led us to propose an explanation for the rotation period dearth to be due to the non-detection of periodicity caused by the cancellation of dark spots and bright faculae at 800 Myr.Comment: 12+15 pages, 10+2 figures, accepted for publication in A&

    Ultrastructural analysis of chromatin in meiosis I plus II of rye (Secale cereale L.)

    Get PDF
    Scanning electron microscopy (SEM) proves to be an appropriate technique for imaging chromatin organization in meiosis I and II of rye (Secale cereale) down to a resolution of a few nanometers. It could be shown for the first time that organization of basic structural elements (coiled and parallel fibers, chromomeres) changes dramatically during the progression to metaphase I and II. Controlled loosening with proteinase K (after fixation with glutaraldehyde) provides an enhanced insight into chromosome architecture even of highly condensed stages of meiosis. By selective staining with platinum blue, DNA content and distribution can be visualized within compact chromosomes as well as in a complex arrangement of fibers. Chromatin interconnecting threads, which are typically observed in prophase I between homologous and non-homologous chromosomes, stain clearly for DNA. In zygotene transversion of chromatid strands to their homologous counterparts becomes evident. In pachytene segments of synapsed and non-synapsed homologs alternate. At synapsed regions pairing is so intimate that homologous chromosomes form one filament of structural entity. Chiasmata are characterized by chromatid strands which traverse from one homolog to its counterpart. Bivalents are characteristically fused at their telomeric regions. In metaphase I and II there is no structural evidence for primary and secondary constrictions. Copyright (C) 2003 S. Karger AG, Basel

    PMT Test Facility at MPIK Heidelberg and Double Chooz Super Vertical Slice

    Full text link
    Proceedings supplement for conference poster at Neutrino 2010, Athens, Greece

    Probing the Noncommutative Standard Model at Hadron Colliders

    Get PDF
    We study collider signals for the noncommutative extension of the standard model using the Seiberg-Witten maps for SU(3)_C x SU(2)_L x U(1)_Y to first order in the noncommutativity parameters theta_munu. In particular, we investigate the ensitivity of Z-gamma-production at the Tevatron and the LHC to the components of theta_munu. We discuss the range of validity of this approximation and estimate exclusion limits from a Monte Carlo simulation.Comment: 18 pages LaTeX, 23 figures. Slightly expanded introduction and additional references. Accepted for publication in Physical Review

    Characteristic numbers of manifold bundles over surfaces with highly connected fibers

    Get PDF
    We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and \hat{A}-genera, and compute the second integral cohomology of BDiff(M) up to torsion in terms of generalized Miller--Morita--Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber MM and discuss the resulting obstructions to smoothing them

    Hyperthermia in clinical oncology

    Get PDF
    corecore