33 research outputs found

    Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing

    Get PDF
    Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’, and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous GGTA1 and CMAH knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before GGTA1 knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age

    Ubiquitous LEA29Y Expression Blocks T Cell Co-Stimulation but Permits Sexual Reproduction in Genetically Modified Pigs

    Get PDF
    We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action

    The human cytomegalovirus ul11 protein interacts with the receptor tyrosine phosphatase cd45, resulting in functional paralysis of t cells

    Get PDF
    Human cytomegalovirus (CMV) exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR) is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV

    Monoclonal antibodies to common epitopes of the human alpha/beta T-cell receptor preferentially activate CD45RA+ T-cells

    No full text
    The murine monoclonal antibody BMA 031 (IgG2b) is directed to a monomorphic epitope on the human alpha/beta T-cell receptor. In contrast to anti-CD3 antibodies of the IgG2b isotype, BMA 031 is able to induce a proliferative response in T-cells from IgG2b low responders. This response occurs independently of cross-linking conditions indicating that the mode of activation differs from stimulation by the anti-CD3 antibody OKT3 (IgG2a) which strictly depends on cross-linking conditions. to further characterize the stimulatory potential of the two antibodies we studied the lymphocyte subsets responsive to stimulation by BMA 031 and OKT3. In CD45RA+ cells both antibodies exhibited similar effects. They induced weak expression of the 55-kDa chain of the interleukin-2 receptor (CD25), virtually no interleukin-2 secretion, but nevertheless strong proliferation. In CD45R0+ cells OKT3 and BMA 031 showed markedly different effects. OKT3 stimulated strong CD25 expression, strong interleukin-2 production, and marked proliferation. In contrast, CD45R0+ cells stimulated by BMA 031 showed only weak CD25 expression but neither interleukin-2 production nor proliferation. These data suggest that CD45RA+ and CD45R0+ cells differ in their capability to produce interleukin-2 upon stimulation via the CD3/T-cell receptor complex and also in the requirement for interleukin-2 to mount a proliferative response. The differential effect of OKT3 and BMA 031 in CD45R0+ cells probably results from the failure of BMA 031 to trigger interleukin-2 production which may be a consequence of its inability to induce CD3/T-cell receptor cross-linking in IgG2b low responders BMA 031 is therefore a useful tool for the selective activation of CD45RA+ cells in these individuals

    The 77C→G Mutation in the Human CD45 ( PTPRC

    No full text

    Downregulation of Swine Leukocyte Antigen Expression Decreases the Strength of Xenogeneic Immune Responses towards Renal Proximal Tubular Epithelial Cells

    No full text
    Xenotransplantation reemerged as a promising alternative to conventional transplantation enlarging the available organ pool. However, success of xenotransplantation depends on the design and selection of specific genetic modifications and on the development of robust assays allowing for a precise assessment of tissue-specific immune responses. Nevertheless, cell-based assays are often compromised by low proliferative capacity of primary cells. Proximal tubular epithelial cells (PTECs) play a crucial role in kidney function. Here, we generated immortalized PTECs (imPTECs) by overexpression of simian virus 40 T large antigen. ImPTECs not only showed typical morphology and phenotype, but, in contrast to primary PTECs, they maintained steady cell cycling rates and functionality. Furthermore, swine leukocyte antigen (SLA) class I and class II transcript levels were reduced by up to 85% after transduction with lentiviral vectors encoding for short hairpin RNAs targeting β2-microglobulin and the class II transactivator. This contributed to reducing xenogeneic T-cell cytotoxicity (p < 0.01) and decreasing secretion of pro-inflammatory cytokines such as IL-6 and IFN-γ. This study showed the feasibility of generating highly proliferative PTECs and the development of tissue-specific immunomonitoring assays. Silencing SLA expression on PTECs was demonstrated to be an effective strategy to prevent xenogeneic cellular immune responses and may strongly support graft survival after xenotransplantation

    Expression of viral CD45 ligand E3/49K on porcine cells reduces human anti-pig immune responses

    No full text
    Abstract Transgenic expression of protective molecules in porcine cells and tissues is a promising approach to prevent xenograft rejection. Viruses have developed various strategies to escape the host’s immune system. We generated porcine B cells (B cell line L23) expressing the human adenovirus protein E3/49K or the human cytomegalovirus protein pUL11 and investigated how human T, NK and B cell responses are affected by the expression of the viral proteins. Binding studies revealed that E3/49K and pUL11 interact with CD45 on human but not porcine peripheral blood mononuclear cells. T cell proliferation in response to L23-E3/49K cells was significantly reduced and accompanied by development of an anti-inflammatory cytokine milieu (low: TNF-alpha, IFN-gamma, IL-6; high: IL-4, IL-10). Human peripheral blood mononuclear cells which had been primed for four weeks by L23-E3/49K cells included an extended population of regulatory T cells. Cytotoxicity of effector T and natural killer cells against L23 cells was significantly reduced (40 to 50%) by E3/49K expression. B cell activation and antibody production to E3/49K expressing cells was also diminished. Surprisingly, pUL11 expression showed no effects. Reduction of human anti-pig immune responses by transgenic expression of selected viral genes may be a novel approach for protection of porcine xenografts
    corecore