38 research outputs found

    Gasification Kinetics in Continuous Supercritical Water Reactors

    Get PDF
    Supercritical water gasification (SCWG) is an emerging technology with synergistic applications in renewable energy and waste processing. Supercritical water (SCW) functions as a green reaction medium during the gasification process, serving to dissolve and decompose complex organic molecules via ionic, radical, hydrolysis, and pyrolysis reaction mechanisms. Researchers investigate the decomposition of model compounds in order to predict product yields and conversion efficiencies during the gasification of heterogeneous biomass waste, food waste, sewage sludge, and other available feedstocks. Continuous, laboratory-scale reactors are often employed to study reaction kinetics, pathways, and mechanisms. This chapter synthesizes previous work investigating model compound gasification in continuous supercritical water reactors (SCWRs). A summary of continuous reactor design strategies is presented for practical benefit, followed by a discussion on reaction chemistry in the supercritical water environment. Reaction pathways and mechanisms have been investigated for several model compounds, lending insight toward the conditions needed for the complete conversion of real-world feedstocks. Several studies assume first-order reaction kinetics and propose Arrhenius parameters for the decomposition reaction. The first-order rate assumption must be carefully evaluated, and the applicable temperature range must be specified. Opportunities for further research are discussed

    Supercritical Water Gasification: Practical Design Strategies and Operational Challenges for Lab-Scale, Continuous Flow Reactors

    Full text link
    Optimizing an industrial-scale supercritical water gasification process requires detailed knowledge of chemical reaction pathways, rates, and product yields. Laboratory-scale reactors are employed to develop this knowledge base. The rationale behind designs and component selection of continuous flow, laboratory-scale supercritical water gasification reactors is analyzed. Some design challenges have standard solutions, such as pressurization and preheating, but issues with solid precipitation and feedstock pretreatment still present open questions. Strategies for reactant mixing must be evaluated on a system-by-system basis, depending on feedstock and experimental goals, as mixing can affect product yields, char formation, and reaction pathways. In-situ Raman spectroscopic monitoring of reaction chemistry promises to further fundamental knowledge of gasification and decrease experimentation time. High-temperature, high-pressure spectroscopy in supercritical water conditions is performed, however, long-term operation flow cell operation is challenging. Comparison of Raman spectra for decomposition of formic acid in the supercritical region and cold section of the reactor demonstrates the difficulty in performing quantitative spectroscopy in the hot zone. Future designs and optimization of SCWG reactors should consider well-established solutions for pressurization, heating, and process monitoring, and effective strategies for mixing and solids handling for long-term reactor operation and data collection

    EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF STAND-OFF LAYER DAMPING TREATMENTS FOR BEAMS

    Get PDF
    ABSTRACT Passive stand-off layer (PSOL

    The Analysis of a Nonlinear Difference Equation Occurring in Dynamical Systems

    Get PDF
    A difference equation with a cubic nonlinearity is examined. Using a phase plane analysis, both quasi-periodic and chaotically behaving solutions are found. The chaotic behavior is investigated in relation to heteroclinic and homoclinic oscillations of stable and unstable solution manifolds emanating from unstable periodic points. Certain criteria are developed which govern the existence of the stochastic behavior. An approximate solution technique is developed giving expressions for the quasi-periodic solutions close to a stable periodic point and the accuracy of these expressions are investigated. The stability of the solutions is examined and approximate local stability criteria are obtained. Stochastic excitation of a nonlinear difference equation is also considered and an approximate value of the second moment of the solution is obtained.</p

    Method to Achieve High Frame Rates in a Scanning Fiber Endoscope

    No full text
    A new and miniature imaging device is being developed to allow flexible endoscopy in regions of the body that are difficult to reach. The scanning fiber endoscope employs a single scanning optical fiber to illuminate a target area, while backscattered light is detected one pixel at a time to build a complete image. During each imaging cycle the fiber is driven outward in a spiral pattern from its resting state at the image center to the outer fringe of the image. At this point, the fiber is quickly driven back to its initial position before acquiring a subsequent frame. This work shortens the time between successive images to achieve higher overall frame rates by applying a carefully timed input, which counteracts the tip motion of the scanning fiber, quickly forcing the scanning fiber to the image center. This input is called motion braking and is a square wave function dependent upon the damped natural frequency of the scanning fiber and the instantaneous tip displacement and velocity. Imaging efficiency of the scanning fiber endoscope was increased from 75-89% with this implementation
    corecore