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A Nonlinear State-Space Model of
a Resonating Single Fiber
Scanner for Tracking Control:
Theory and Experiment
A nonlinear state-space dynamic model of a resonating single fiber scanner is deve
to understand scan distortion—jump, whirl, amplitude dependent amplitude and p
shifts—and as the basis for controllers to remove those distortions. The non-planar
linear continuum dynamics of a resonating base excited cantilever are reduced to a
state-space coupled Duffing equations with centripetal acceleration. Methods for ex
mentally determining the model parameters are developed. The analytic frequenc
sponses for raster, spiral and propeller scans are derived, and match experimenta
quency responses for all three scan patterns, for various amplitudes, and using the
model parameters.@DOI: 10.1115/1.1649974#
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1 Introduction
At the University of Washington’s Human Interface Technolo

Lab, small high-speed laser scanners with wide fields of v
~fov! are being developed for various display and image acqu
tion applications. Among them is a resonating single fiber scan
which has demonstrated a scan of 20 deg fov at 15.8 kHz
potential uses include a single fiber scanning endoscope—a
ible miniature endoscope that promises high resolution image
a package less than 3 mm in diameter@1#.

The fiber scanner consists of a light-carrying single mode o
cal fiber attached to a quadrant piezoelectric tube at a point c
to the fiber’s distal end. The length of the fiber extending beyo
the piezotube acts as base excited cantilever and is adjusted s
resonant frequency is the desired scan frequency. Opposite p
quadrants of the piezotube excite the fiber at the cantilever’s r
nant frequency. The low damping and resonant behavior of
fiber amplifies small tube displacements into large fiber tip d
placements. Laser light coupled into the fiber emanates from
vibrating tip, producing a large field of view spot scan. See Fig

Once a spot scan is produced, the intensity of the light spot
be modulated for image display applications. For image acqu
tion applications, the intensity of the backscattered light from
spot scanned across a target can be collected. In both these
cations, high quality scans are required. However, due to the
namics of the resonating fiber, the scan may not follow an
sumed reference pattern resulting in image distortion.

To understand and predict the fiber scanner’s behavior we
derive a nonlinear dynamic model. This model will also serve a
basis for a nonlinear controller to force the scan to follow a
fined reference regardless of the variability of the scanner’s
chanical and dynamic parameters, thereby removing the disto
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@2#. The parameters of resonant scanners may vary from sca
to scanner and in the same scanner due to manufacturing var
ity, environmental changes, and aging effects. Our goal is to
rive a succinct model of the system dynamics describing the
sired effects in the region of interest and verify it experimenta
using typical scan patterns.

This model may be applicable to devices other than fiber sc
ners such as NSOM probes and various fiber optic sensors.
cording to Nayfeh@3#, the motions of base excited cantilevers a
of interest in connection with helicopter rotor blades, manipula
arms and spacecraft antennas. Additional control effort to da
out parametric excitation~whirl! of these structures has so fa
consisted of adding nonlinear damping terms proportional to
velocity cubed@4#. These controllers are somewhatad hoc, being
added and their effects investigated. With the developmen
equations describing the vibrations of base excited cantilevers
form compatible with control theory, rigorous design and analy
of robust controller can be investigated.

1.1 Scan Patterns. Various scan patterns can be created
properly modulating the piezo’s drive signal. A standardz-y raster
scan uses the resonating fiber scanner for the fast horizontal
and a galvo-mirror scanner for the slow vertical scan, as ill
trated in Fig. 2a. For a standard VGA display, the fiber resonat
with a constant amplitude sinewave of 15.7 kHz, and the gal
mirror vibrates at 30 Hz. The disadvantage of using the gal
mirror scanner is that it is large and heavy. The reflection off
mirror also results in a scanner geometry that is not axially sy
metric, further increasing the size of the scanner. Removing
mirror scanner would result in significant weight, size, and pow
savings.

A piezotube with quartered electrodes is useful for creat
two-dimensional resonant scan patterns with a single actuator
cause it provides both horizontal and vertical actuation. Beca
the movement of the piezotube is small, the fiber needs to reso
in both directions to produce a two-dimensional scan with a u
able field-of-view. Since resonant amplification occurs only in
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small range around each natural frequency, resonant scan
typically sinusoidal. Lissajous patterns result fromz-y scans of
two sinusoidal signals. If the two signals’ frequency ratio can
expressed as a small integer or a rational number, a stable c
pattern is created. The frequency ratio for a 2-D resonant sca
is the ratio of thez-axis’ natural frequency to they-axis’ natural
frequency. The resonant single fiber scanner uses a standar
cularly cylindrical optical fiber, so thez and y axes’ natural fre-
quencies are the same and 1:1 Lissajous patterns can be cr
Depending on the amplitude and phase of thez andy scan, the 1:1
Lissajous pattern can take on a variety of shapes: skewed l
rotated ellipses, and circles.

A circular scan results when the horizontal and vertical reson
vibrations are of the same frequency and equal amplitude bu
deg out of phase. To create a space-filling spiral scan, the am
tudes of a circular scan are modulated in a triangle pattern w
the phases are kept constant. Fig. 2b. In addition to a spiral scan
a ‘‘propeller’’ scan can be generated with a single piezotube
seen in Fig. 2c. A 1:1 Lissajous pattern creates a 45 deg skew
line when the horizontal and vertical sinewaves are of the sa
frequency, equal amplitude and in-phase. To produce a space
ing scan, this 45 deg linear ‘‘radial’’ scan is rotated in a contin
ous ‘‘angular’’ sweep by modulating the horizontal and vertic
sinewaves’ amplitudes such that the sum of their squares rem
constant—one varies sinusoidally, the other varies cosinusoid

1.2 Image Distortion. In both image display and image ac
quisition applications, high quality scans are paramount. The

Fig. 1 Resonating Single Fiber Scanner and Experimental
Setup

Fig. 2 Scan Patterns with z and y components
Journal of Dynamic Systems, Measurement, and Control
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persal or collection of the image data must be synchronized w
the position of the scan. Typically, the data or pixel collecti
starts at the beginning of the scan and occurs sequentially
constant rate commensurate with the scan frequencies. How
the scan cannot always be assumed to follow a known, reg
repeatable reference pattern, due to the piezotube and the res
fiber dynamics, resulting in image distortion. Near resonance,
fiber can undergo large displacements taking it outside the re
of linear dynamic behavior. Observed nonlinear dynamic effe
include amplitude dependant phase shifts, nonlinear amplitude
sponse, amplitude jumps, and whirl.

The amplitude dependant phase shifts and nonlinear ampli
response mainly affect the polar spiral and propeller scans s
they both depend on amplitude modulation for creating a spa
filling scan. The amplitude dependent phase shift manifests it
as warped radial lines in the images created with a spiral scan
the propeller scan, the radial scan line will become elliptical b
cause thez andy scans are of different amplitudes and therefo
have different phase shifts. The elliptical radial scan results
blurred or incoherent images. The amplitude dependent ph
shift does not regularly affect the raster scan since it consists
constant amplitude sinewave. However, if the amplitude of
raster scan is changed, say to decrease the field-of-view to
duce a zoomed scan@1#, the amplitude dependant phase shift w
cause a loss of synchronization with the data input/output res
ing in a distorted image.

Likewise, the nonlinear amplitude response mainly affects
amplitude modulated polar scans. The inner radii will be nea
linearly spaced while the outer radii will be expanded due to
nonlinear amplitude response. This results in a ‘‘fish-eye’’ appe
ance in the images created with a spiral or propeller scan. Ag
the raster scan does not suffer as greatly from this effect bec
of its constant amplitude scan. However, the zooming will not
linear with change in drive amplitude.

Amplitude jumps are sudden changes in fiber tip amplitud
with the same drive frequency and amplitude. At certain frequ
cies, there are two stable vibration amplitudes and small dis
bances will cause the amplitude to change from one to the ot
In medical imaging or display applications this sudden and un
ticipated change in field of view can be catastrophic.

Whirl is an undriven out-of-plane response. For a raster sc
although the fiber is being only excited horizontally, there may
a vertical response in addition to the horizontal vibration. T
vibration causes the scan to take on a skewed linear, rotate
lipse, or a circular shape instead of the ideally horizontal lin
pattern. Depending on the severity of the whirl, the resulting i
ages are distorted, blurred, or incoherent. The effects of whirl
not as apparent in the spiral or propeller scan, possibly beca
they are being driven in both thez and y planes simultaneously
Whirl may contribute to the elliptical radial scan line in the pr
peller scan, in addition to the amplitude dependant phase s
mentioned previously.

2 Dynamic Model
To understand the behavior of the scanner, we need a nonli

dynamic model. The model will also serve as a basis for the
sign of a nonlinear controller to force the scan to follow a defin
reference regardless of the dynamics thereby removing the di
tion. Our goal is to derive a succinct model of the system dyna
ics that describes the desired effects in the region of interest;
find the minimum model description that contains the amplitu
dependence of phase and amplitude, the jump phenomena
whirl.

The main parts of the fiber scanner are the optical fiber, wh
carries the light and whose vibration scans the light; and the
ezotube, which excites the fiber. The dominant system dynam
are expected to be from the large amplitude resonant vibration
MARCH 2004, Vol. 126 Õ 89
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the fiber. We consider the fiber as a base excited cantilever un
going transverse vibrations and investigate the dynamics nea
resonant frequency.

2.1 Base Excited Cantilever Continuum Model. Haight
and King @5# used a set of two-dimensional cross-coupled par
integro-differential equations for a transverse base excited ca
lever that included longitudinal and nonlinear inertial effects, b
ignored nonlinear curvature for their analysis. Crespo da Silva@6#
found that the nonlinear curvature can not be ignored and der
a more complete set of torsional-flexural-flexural partial integ
differential equations for a transverse base excited cantilever
retained longitudinal inertia, nonlinear inertia and nonlinear c
vature effects. Pai and Nayfeh@3# extended Crespo da Silva’
derivation to include gravitational effects and motion in a fix
frame reference rather than a base frame reference. The equa
given by Pai and Nayfeh are

v̈1cv̇1byv-85~12by!Fw9E
1

s

v9w9ds2v-E
0

s

w9v8dsG 8
2@~12by!2/by#S w9E

0

sE
1

s

v9w9dsdsD 9

2by@v8~v8v91w8w9!8#82
1

2 H v8E
1

sF E
0

s

~v82

1w82!dsGdsJ 8
1@v9~s21!1v8#~L3/Dh!mg

(1a)

ẅ1cẇ1byw-852~12by!Fv9E
1

s

v9w9ds2v-E
0

s

w9v8dsG 8
2@~12by!2/by#S v9E

0

sE
1

s

v9w9dsdsD 9

2@w8~w8w91v8v9!8#8

2
1

2 H w8E
1

sF E
0

s

~v821w82!dsGdsJ 8

1@w9~s21!1w8#~L3/Dh!mg

1FV2 cosVt1cFV sinVt (1b)

Note: dots are temporal differentiation, primes are spatial
ferentiation. See Fig. 3.

For a symmetrical homogeneous beam like the fiber, the rati
the principal stiffnesses are approximately the same,by51
1«2d'1. The«2d term allows slight asymmetry of the fiber, bu
theby21 terms will be of higher order than the derivation’s thi
order expansion of the nonlinearities and therefore the bend
torsional cross coupling disappears@3#. With by511«2d and ig-
noring gravitational effects, Eqs.~1a,b! become

v̈1cv̇1byv-852$v8~v8v91w8w9!8%8

2
1

2 H v8E
1

sF E
0

s

~v821w82!dsGdsJ 8
(2a)

ẅ1cẇ1w-852$w8~v8v91w8w9!8%8

2
1

2 H w8E
1

sF E
0

s

~v821w8w!dsGdsJ 8

1FV2 cosVt1cFV sinVt (2b)

The first term on the right hand side of Eq. 2a or Eq. 2b is due
to nonlinear curvature, while the second term on the right h
side is due to nonlinear inertia. Pai and Nayfeh use a fixed fra
90 Õ Vol. 126, MARCH 2004
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of reference, which leads to excitation of the formcFV sinVt
1FV2 cosVt. This is equivalent to the generalcu̇1V2u excita-
tion term of a base excited structure in a fixed frame of refere
with base motionu5F cosVt. We replace the sinusoidal bas
motion with general excitation and also include the possibility
excitation in both axes,uz anduy . For small displacements, ligh
damping andV2'1, we get

v̈1cv̇1byv-852$v8~v8v91w8w9!8%8

2
1

2 H v8E
1

sF E
0

s

~v821w82!dsGdsJ 8
1uy

(3a)

ẅ1cẇ1w-852$w8~v8v91w8w9!8%8

2
1

2 H w8E
1

sF E
0

s

~v821w82!dsGdsJ 8
1uz

(3b)

2.2 Discrete Modal Nonlinear Ordinary Differential Equa-
tions. The partial integro-differential equations~3a,b! can be re-
duced to ordinary differential equations by an application
Galerkin’s method with the assumption of linear mode shap
F(x), for cantilevers, and allowing for nonlinear temporal r
sponsesp andq in the z andy axes respectively.

v~x,t !5F~x!q~ t !, w~x,t !5F~x!p~ t ! (4a)

F~x!5sinbx2sinhbx1a~cosbx2coshbx! (4b)

wherea andb depend on mode numbern
Substitution of Eqs. 4a,b into Eqs. 3a,b yields equations for the

temporal responses.

Fig. 3 Coordinate systems for a base excited cantilever x , y
and z are the inertial coordinates; t is the time; s is the unde-
formed arc length „material coordinate …; j, h, z are the principle
axes of the beam’s cross section at position s ; Dj , Dh , Dz are
the principle stiffnesses; byÄDz Dh and bgÄDj ÕDh ; u „s ,t …,
v „s ,t …, and w „s ,t … are the components of the displacement of
the centroid at an arbitrary location s along the inertial axes x ,
y and z respectively, and g denotes the acceleration due to
gravity. F and V are the constant amplitude and frequency of
the base motion. All variables are nondimensionalized using
the constrained length of the beam L and the characteristic
times L 2Am ÕDh where m is the mass per unit length. The fol-
lowing assumptions are made: „a… the cross-section dimen-
sions b and h and material properties are uniform, „b… the dis-
tributed torsional moments of inertia of the beam are
negligible, „c… the dissipation of energy due to internal friction,
resistance and relative motion between the beam and its sup-
port system can be modeled by a viscous damper having the
coefficient c . †3‡
Transactions of the ASME
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p̈1«cṗ1p5«k1~2p32pq2!2«k2p~ ṗ21pp̈1q̇21qq̈!1«Cuz
(5a)

q̈1«cq̇1vy
2q5«k1~2q32p2q!2«k2q~ ṗ21pp̈1q̇21qq̈!

1«Cuy (5b)

where k15*0
1Fm@Fn8(Fn8Fn9)8#8ds is a constant related to th

nonlinear curvature contributions, k2

5*0
1Fm@Fn8*1

s*0
sFn8

2dsds#8ds is a constant related to the nonlin
ear inertia contributions, andC5*0

1Fmds.
We have introduced a book keeping parameter« to group terms

of similar importance. From experimental experience, we kn
the system is weakly nonlinear, lightly damped and subjecte
weak excitation.

It is necessary in modern control theory to describe the dyn
ics in terms of its state variables (p,ṗ,q,q̇). Solving for p̈ and q̈
in Eqs. 5, lettingvy

2511«d, then expanding the solutions usin
Taylor series in terms of« and retaining only the terms of order«,
the differential equations reduce to

p̈1«cṗ1p52«k3p~p21q2!2«k2p~ ṗ21q̇2!1«Cux (6a)

q̈1«cq̇1vy
2q52«k3q~q21p2!2«k2q~ ṗ21q̇2!1«Cuy

(6b)

where k35~k12k2! (6c)

This is a set of cross-coupled Duffing equations with centripe
acceleration. The coefficient on the cubic spring term2«k3p(p2

1q2),k35(k12k2) is a combination of the nonlinear curvatur
k1 , and nonlinear inertia,k2 . The nonlinear curvature adds
hardening spring effect, while the nonlinear inertia adds a sof
ing spring effect. This is in agreement with Crespo da Silva a
Glynn’s @6# observations. The cross-coupled centripetal accel
tion term 2«k2p( ṗ21q̇2) is due to longitudinal and nonlinea
inertia effects.

The terms of order«2 contain nonlinearities of order five; i.e
qp4,qp2ṗ2, etc. Crespo da Silva and Glynn’s@6# partial integro-
differential equations were expanded such that perturbation an
sis would only retain nonlinearities up to order three; i
q3,qp2,qṗ2, etc. Therefore, the order five nonlinearities are
higher order than the original derivation accounted for and
therefore be ignored. The order«2 terms also contain nonlinea
damping terms«2k2cp(pṗ1qq̇),«2k2cq(pṗ1qq̇) and nonlinear
forcing terms«2k2Cp(pux1quy),«

2k2Cq(pux1quy). Damping
was included in the original equationsad hocand assumed to be
linear, so we should feel no obligation to retain these nonlin
terms. Instead we can add the viscous and aerodynamic dam
directly to the state space equations. As for the nonlinear forc
terms, we can consider them higher order terms and ignore th

2.3 Damping Models. Nonlinear effects and damping affec
the dynamic response of the fiber mainly in the frequency regi
of large deflections near resonance. We must therefore care
consider how damping limits the deflection of the fiber. In t
original partial integro-differential equations~Eqs. 1a,b!, viscous
damping was added somewhatad hoc. Viscous damping is a com
monly used model for damping because it is linear, and for h
monic motion, there is an equivalent viscous damping to ot
forms of damping. We will examine the forms of internal dampi
and aerodynamic drag and determine whether a viscous app
mation is appropriate. We examine two models for internal dam
ing: imperfect elasticity and solid damping.

2.3.1 Imperfect Elasticity. The imperfect elasticity model, a
type of viscoelastic damping, is the form most commonly used
linear analysis of fiberoptic probes for near-field scanning opt
microscopy~NSOM! @7#. NSOM probes use a resonating optic
fiber cantilever and are similar to the fiber scanner except la
displacements do not occur. The stress acting on the body is
sumed to be proportional to the strain and the rate of strains
Journal of Dynamic Systems, Measurement, and Control
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5E«1g«̇5E(«1a«̇). From an analysis of the linear continuum
mechanics with this damping model, the spatial mode shape s
tion results in a complex stiffness term and the temporal dynam
solution contains a linear viscous term. Although this model
commonly used in NSOM probe linear dynamic analysis and
given good experimental results@1,7,8#, the imperfect elasticity
assumption is actually not appropriate. Experiments performed
Kimball and Lovell @9# indicate that when glass is subjected
cyclic stress, the internal friction is independent of the rate
strain and is dependent on the amplitude over a considerable
quency range.

2.3.2 Solid Damping. A model of the drag force,Fd , for
structural damping that incorporates the behavior discussed
Kimball and Lovell is the solid damping model@10,11#, a type of
hysteretic damping.

Fd52
b

2
sgn~ ṗ!upu (7a)

with the equivalent viscous damping coefficient

ceq5b/pv (7b)

The equivalent damping coefficient,ceq , is inversely proportional
to the vibration frequency,v. In this research, the frequency rang
of interest is near the fiber’s resonance, which is very narrow
light damping. The equivalent damping coefficient should
nearly constant in the region of interest. Therefore, viscous da
ing with a constant coefficient can be considered a reason
approximation for solid damping in the fiber.

2.3.3 Aerodamping. The fiber has a circular cross-sectio
and is vibrating in air~for the experiments reported here!. For
moderate speeds~high Reynolds’s number!, pressure forces domi
nate over frictional viscous air drag. The aerodynamic drag fo
~aerodamping! @10,11#, Fd , can be approximated by

Fd52a sgn~ ṗ!ṗ252au ṗu ṗ (8a)

with equivalent viscous damping coefficient,ceq , of

ceq5
8

3p
avP, (8b)

whereP is the amplitude of the sinusoidal responsep of frequency
v.

We see that the equivalent viscous damping increases with
quency and is proportional to the amplitude of the response. M
of the effects of the aerodynamic drag occur therefore at the s
resonant peak with significantly less effect elsewhere. Also,
cause the spiral and propeller scan patterns are amplitude m
lated, the effect of nonlinear aerodynamic drag can become
portant. Therefore, an equivalent viscous damping term
inappropriate in this case and we need to add an additional da
ing component into the dynamic equations to explicitly inclu
aerodynamic damping.

2.4 Piezotube Actuator Dynamics. The amplitude of the
base excitation is not a directly controlled parameter. The volt
applied to the piezotube is the input to the system. The movem
of the piezotube’s free end provides the base excitation for
fiber. Since we control the command voltages, not the base m
ment directly, we must be concerned with the piezotube dynam

Ideally, a piezotube can be modeled as a linear second-o
system—a bending tube@12,13#. The bending is extremely sma
and therefore the end motion can be approximated by a tran
tion. The piezotube is massive and stiff enough that the motion
the fiber does not affect the motion of the tube. If we drive t
piezotube with a sinusoidal voltage of a frequency well below
first resonant frequency, we expect the piezotube’s end motio
be sinusoidal with an amplitude linearly related to the drive vo
age amplitude and in phase with the drive sinusoid. Prelimin
experimental evidence showed that in the frequency range o
MARCH 2004, Vol. 126 Õ 91
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terest, the piezotube output is sinusoidal, nearly in-phase with
input, and with a constant input/output amplitude ratio. Thus,
consider the base excitation amplitude,u, to be linearly related to
the input voltage,v.

Cui5Kv i ~ i 5z,y! (9)

Although a piezotube ideally acts as a linear second-order
tem, there are two main nonlinearities which affect piezoelec
materials—creep~or drift! and hysteresis. Aging is also a conce
and that is one of the goals of adding a controller to the syst
Since we are vibrating the tube at high frequencies without a
component, creep is not a concern. Hysteresis acts as a dela
the system, introducing an undesirable phase shift between
input and output, and can distort the output. A phase shift
versely affects the image quality and would reduce the stability
any controller. Since the preliminary experiments showed the
ezotube output is sinusoidal, nearly in-phase with the input,
with almost a constant input/output amplitude ratio, the hyster
curve must be very narrow. If a narrow hysteresis curve is
proximated as a straight line, then the input is proportional to
output and the hysteresis nonlinearity can be ignored.

2.5 Sensor Dynamics. To complete the loop for feedbac
control of the fiber scanner or to make experimental observat
of the fiber’s tip displacement, a position sensor is used. The l
emanating from the fiber tip is projected onto the positi
sensor—a duolateral position sensing photodiode—and a vol
related to its position is produced. The light emanating from
fiber follows a straight line in the direction of the fiber’s tip ang
to the sensor. If the fiber’s tip is extremely close to the posit
sensing photodiode, the difference between the tip position
the light spot on the photodiode will be small. If the positio
sensor’s voltage is linearly proportional the position of the lig
spot on its surface, and its response is fast enough, the posit
sensor’s voltages,p̃ and q̃, are linearly proportional to the fiber’s
tip positions,p andq.

p̃>sp, q̃>sq (10)

2.6 Nonlinear State-Space System Dynamics.With the
nonlinear fiber dynamics—the coupled Duffing equation with c
tripetal acceleration, aerodamping, equivalent viscous dampin
solid damping, proportional actuation inz andy-axes, and propor-
tional sensors—the equations of motion for the system becom

p̈1«cṗ1«au ṗu ṗ1p52«k3p~p21q2!2«k2p~ ṗ21q̇2!1«Kvz
(11a)

q̈1«cq̇1«auq̇uq̇1vy
2q52«k3q~p21q2!2«k2q~ ṗ21q̇2!

1«Kvy (11b)

p̃5sp, (11c)

q̃5sq (11d)

The equations are normalized with respect to the resonant
quency in thez direction (p),vz . Note that, the bookkeeping
coefficient« has been retained.

The parametersvz ,vy ,«c,«a,«k3 ,«k2 ,«K can be determined
by comparing the theoretical frequency response with the
quency response obtained experimentally at a given sinuso
forcing amplitude,vz5Fz cosVt.

3 Frequency Response
To determine the frequency response of the system, we fo

the analysis by Ho, Scott, and Eisley@14# for the large amplitude
whirling motions of a simply supported beam including the
sponse curves and the stability of motion. The dynamic equat
they derived for the simply supported beam are cross-cou
Duffing equations~no centripetal acceleration!. They used har-
monic balance to determine the response curves for the undam
92 Õ Vol. 126, MARCH 2004
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case with actuation in only one-plane. We will extend their resu
to the damped Duffing equation with centripetal acceleration w
actuation appropriate for raster, spiral and propeller scans.

We rewrite the system Equations 11a–d as

p̈1 «̄bṗ1«au ṗu ṗ1p52 «̄p~p21q2!2«2p~ ṗ21q̇2!1 «̄C̄vz
(12a)

q̈1 «̄bq̇1«auq̇uq̇1vy
2q52 «̄q~p21q2!2«2q~ ṗ21q̇2!1 «̄C̄vy

(12b)

where,«̄5«k3 , b5c/k3 , ā5a/k3 , C̄5K/k3 , «25«k2 . The bar
notation will be hereafter dropped.
In these equations,p andq can be considered the fiber tip’s pos
tion in thez andy direction respectively, and the coefficients a
«b, equivalent viscous damping;«a, aerodynamic drag;«C, forc-
ing; «, nonlinear spring; and«2 , centripetal acceleration coeffi
cients.

3.1 General Sinusoidal Frequency Response.We will de-
rive the frequency response of the system for general sinuso
excitation in both directions, then make appropriate reductions
each scan pattern. Although there is amplitude modulation in
spiral and propeller scan’s forcing functions and responses, it
curs on a slower time scale compared with the faster time s
sinusoidal vibrations. Therefore, we use the Poincare-Linds
method to determine the steady-state frequency response o
fiber to harmonic inputs with constant amplitudes in both plan
from Eqs. 12a and 12b.

We use the following assumed solutionsp5Ax cos(Vt1f2), q
5Ay cos(Vt1f31f1) with driving forces ofvz5Fz cos(Vt), vy
5Fy cos(Vt1f1) wheref1 is the phase difference between th
driving forcesvz andvy , f2 is the phase difference betweenvz
andp; f3 is the phase difference betweenvy andq; andAz ,Ay are
the response amplitudes. Letf45f31f1 , the phase difference
betweenvz andq. Substitution of the assumed solutions and dr
ing forces, Fourier expansion of theu sin(Vt)u coefficient, and
equating the secular terms to zero leads to a set of four imp
equations inAz ,Ay ,f1 ,f2 :

2
1

4
AzAy

2~2«1V2«2!sin~2f222f4!2«bAzV2
8

3p
«aAz

2V2

5«CFz sinf2 (13a)

1

4
~«2«2V2!AzAy

2 cos~2f222f4!1
1

2
~«1«2V2!AzAy

2

1
1

4
Az

3~3«1«2V2!1~12V2!Az5«CFz cosf2 (13b)

1

4
Az

2Ay~2«1V2«2!sin~2f222f4!2«bAyV2
8

3p
«aAy

2V2

5«CFy sinf3 (13c)

1

4
~«2«2V2!Az

2Ay cos~2f222f4!1
1

2
~«1«2V2!Az

2Ay

1
1

4
Ay

3~3«1«2V2!1~vy
22V2!Ay5«CFy cosf3

(13d)

3.1.1 Raster Scan With Centripetal Acceleration.These
equations can be used to find the frequency responses of the c
coupled Duffing with centripetal acceleration for a raster sc
SettingFy50, Eqs. 13a–d can be further manipulated to yield
Transactions of the ASME
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F«bV~Az
21Ay

2!1
8

3p
«aV2~Az

31Ay
3!G2

1H 1

4
@~V2«213«!~Az

4

2Ay
4!24~V221!Az

214~V22vy
2!Ay

2#J 2

5~«FAz!
2 (14a)

K S «bV1
8

3p
«aV2AyD 2

1H 1

4
@2~«1«2V2!Az

21~3«1«2V2!Ay
2

14~vy
22V2!#J 2

2F1

4
~«2«2V2!Az

2G2L Ay
250 (14b)

The equations for the raster scan’s frequency response are
of implicit equations in the amplitudes of the responseAz ,Ay ;
and the amplitude and frequency of base excitation,F, V in the
unknown parametersb, «, «2 and C. See Eqs. 12a and 12b for
parameter definitions. Note the trivialAy50 solution.

WhenAy50, the secular Eqs. 13a–13d can be manipulated to
yield the planar amplitude frequency response

F«bV1
8

3p
«aV2AzG2

1H 1

4
~V2«213«!Az

21~12V2!J 2

5~«F/Az! (15a)

and the planar phase frequency response

tanf252

S «bV1
8

3p
«aAzV

2D
F1

4
Az

2~3«1«2V2!1~12V2!G2 (15b)

3.1.2 Spiral Scans. For the spiral scan, the forcing function
are 90 deg apart.f152p/2, f45f32p/2 (vz5F cosVt,vy
5F sinVt). For simplicity, let vy51. Due to symmetry, letA
5Az5Ay . Also, the phase of thez-direction and they-direction in
relation to their plane’s actuation should be the same,f35f2 .
Note thatAz5Ay ,f35f2 may not be the only solution in this
case. Eqs. 13a–13d become

2«bAV2
8

3p
«aA2V25«CF sinf2 (16a)

~«1«2V2!A31~12V2!A5«CF cosf2 (16b)

which can be combined to

S «bV1
8

3p
«aV2AD 2

1@~«1«2V2!A2112V2#22~«CF/A!2

50 (17)

3.1.3 Propeller Scans.For the propeller scan the forcin
functions are in phase.f150, f45f3 (vz5F cosVt,vy
5F cosVt)

For simplicity, let vy51. Due to symmetry, letA5Az5Ay .
Also, the phase of the z-direction and the y-direction in relation
their plane’s actuation should be the same,f35f2 . Note that
Az5Ay ,f35f2 may not be the only solution in this case. Eq
13a–d become

2«bAV2
8

3p
«aA2V25«CF sinf2 (18a)

S 3

2
«1

1

2
«2V2DA31~12V2!A5«CF cosf2 (18b)

which can be combined to

S «bV1
8

3p
«aV2AD 2

1F S 3

2
«1

1

2
«2V2DA2112V2G2

2~«CF/A!250 (19)
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3.3 Stability of the Raster Scan’s Out-of-Plane Response
Although linear theory predicts that the amplitude of the ras
scan’s undriven out-of-plane component is zero,Ay50, using per-
turbation analysis we will see that the cross-coupling in the
namics leads to an instability in the cross-plane axis for b
excitations only in the in-plane direction.

The undamped Duffing equations with centripetal accelera
~Eqs. 12a,b, a5b50,«Cvz5F cos(Vt1f)) are

p̈1p52«p~p21q2!2«p~ ṗ21q̇2!1F cos~Vt1f!
(20a)

q̈1q52«q~p21q2!2«q~ ṗ21q̇2! (20b)

Let’s examine perturbations to the in-plane response by set
q50 andq̇50.

p̈1p1«p31«2pṗ25F cos~Vt1f! (21)

For weak excitation, the solution to Eq. 21 can be approxima
by p5P cosVt. To investigate the stability of this solution letq
5q01h, with q050 andh!1. Substitutingq5h into Eq. 20b
yields

ḧ1~11«p21«2pṗ2!h50 (22)

Substituting in the solutionp5P cosVt into the perturbed
equation of motion, Eq. 22, expanding the cosine squared te
and rescaling the timet52Vt results in

h91~a1b cost !h50 (23a)

a5
1

4V2 F11
1

2
P2~«1«2V2!G . (23b)

b5
1

4V2 F1

2
P2~«2«2V2!G (23c)

where primes are derivatives with respect to the scaled timet.
This is a form of Mathieu’s equation. It is well known that fo

given values ofa andb, there are unbounded solutions, bound
solutions that are not periodic, and periodic solutions of periodp
or 4p @15#. We are interested in periodic solutions of period 4p,
which corresponds to circular whirl.

The Mathieu equation has periodic solutions of period 4p when

a5
1

4
6

1

2
b for small b (24)

Substituting Eqs. 23b, 23c into Eq. 24, expanding the solutio
of V2 in terms of« and«2 , and keeping only the first order term
in « and«2 yields,

V2511
1

4
~«13«2!P2

or

V2511
1

4
~3«1«2!P2 (25)

So, we see near resonanceV>1, a periodic solution of period
4p is allowed. Since the parametric excitation is twice the f
quency of the driving force, a solution to Mathieu’s equation w
a period of 4p would correspond to a perturbed out-of-plane r
sponse that is equal to the frequency of the in-plane respo
Therefore, a response will trace out a 1:1 Lissajous pattern, s
as a circle, ellipse, or skewed line, in thez-y plane. The cross
coupling of the axes results in an instability when the drivi
frequency is near resonance leading to stable motion known
whirling. For the damped Mathieu’s equation, the results are si
lar except damping prevents the formation of whirl for small dr
ing amplitudes.

Following the above procedure for solutions of period 2p,
whena521/2b2, and ignoring third or higher order terms in«
MARCH 2004, Vol. 126 Õ 93
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and«2 , leads to the imaginary frequenciesV252(1/32«2P4) or
V2>2(«22/P2)/«2 and are therefore impossible. Solutions
period 2p represent a ‘‘figure-eight’’ response and are not seen
experiments.

4 Dynamics Discussion

4.1 Scan Distortion Prediction. One of the main goals o
deriving a system model for the scanner was to understand
dynamic behavior that leads to distortion in the scan—an am
tude dependent phase shift, nonlinear amplitude response, j
and whirl. Also, the nonlinear state space model~Eqs. 11a-11d!
must be able to predict these distortion-causing dynamics,
controller to remove the distortion is to use them.

Examining, the planar amplitude frequency response of
Duffing equation with centripetal acceleration for a rater scan~Eq.
15a!, the solutions toAz are nonlinear inF, which accounts for the
nonlinear amplitude response. The planar phase frequency
sponse~Eq. 15b! shows the phase varies with amplitudeAz due to
aerodynamic drag but also inversely with amplitude square,Az

2,
due to the cubic nonlinearity. This accounts for the amplitu
dependent phase shifts. From Eq. 15a, the amplitude response o
the planar Duffing equation with centripetal acceleration fo
raster scan is a sixth order polynomial inAz . BecauseAz must be
positive, there are up to three possible responses—two stable
one unstable. In regions away from resonance, of the three s
tions, only one real-valued solution exists; the other two soluti
are imaginary valued. Since the response can be multi-valued
Duffing equation with centripetal acceleration is able to descr
the jump phenomena.Section 3.3 Stability of the Raster Scan
Out-of-Plane Responseshowed that the Duffing equation wit
centripetal acceleration is able to predict whirl for the raster sc

Notice, the amplitude frequency response for a spiral and p
peller scans whenvy51 and A5Az5Ay ~Eq. 17 and Eq. 19
respectively!, have a similar form to the raster scan’s planar f
quency response~Eq. 15a! except different groupings of the non
linear spring,«, and centripetal acceleration,«2 , coefficients. Be-
cause their amplitude dependencies are the same as the
scan’s, the spiral and propeller scans are also predicted to ex
the nonlinear amplitude response, the amplitude dependent p
response, and jump.

4.2 Equivalent Nonlinear Spring Coefficients. Examining
the planar frequency response of the Duffing equation with c
tripetal acceleration~Eq. 15a!, the centripetal acceleration effec
«2 is grouped with the nonlinear spring effect« and has the same
amplitude dependence. Because they have nearly the same
near resonance,V'1, it would be difficult to determine the val
ues of the individual coefficients« and «2 from the frequency
response curves, but the combination«equiv can be found. Like
equivalent viscous damping, an argument can be made to fin
equivalent effective nonlinear spring coefficient for the gro
whose effect is the same averaged over the cycle.

3

4
«equiv.raster5

3

4
«1

1

4
V2«2→«equiv.raster5«1

1

3
V2«2 .

(26)

The equivalent nonlinear spring coefficient is independent
amplitude and proportional to the square of the frequency. S
only frequency ranges near resonanceV'1 are considered, the
coefficient is nearly constant.

By using the equivalent nonlinear spring coefficient, the Du
ing equation can be used without the inclusion of the centrip
acceleration.

p̈1«bṗ1«au ṗu ṗ1p52«equivp31«CF cosVt (27)

with frequency-amplitude response of
94 Õ Vol. 126, MARCH 2004
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S «bV1
8

3p
«aV2AD 2

1S 3

4
«equivA2112V2D 2

5~«CF/A!2

(28)

with «equiv.raster5«equiv5«11/3V2«2 for the raster scan.
This is applicable only to a raster scan and only when whir

not present. With whirl present, they-dynamics have severa
groupings of« and«2 : (1/4«13/4«2V2), (1/4«21/4«2V2), and
(3/4«11/4V2«2). The equivalent nonlinear spring coefficien
cannot be used. However, when using control algorithms wit
raster scan, whirl would be removed@2# and therefore the re-
sponse would again follow that of the planar Duffing equatio
Therefore, the Duffing equation with equivalent nonlinear spr
coefficient can be used to design and implement controllers for
raster scan.

Similarly, the spiral scan’s frequency response~Eq. 17! looks
similar to that of the Duffing equation~Eq. 28! except that the
parameter for the nonlinear geometric effects is («1«2V2) in-
stead of 3/4«. An equivalent nonlinear spring coefficient can b
found for the combination of the two nonlinear geometric effec

3

4
«equiv.raster5«1«2V2→«equiv.raster5

4

3
~«1V2«2! (29)

The centripetal acceleration appears to have a larger contr
tion to the combination in the spiral case than in the raster c
The coefficients« and«2 are weighted in a 3:1 ratio in the raste
case but in a 1:1 ratio in the spiral case.

Again it would be difficult to determine the individual coeffi
cients« and«2 from the frequency response curves. However
we use both the equivalent nonlinear spring coefficients from
raster scan and the spiral scan, we have two equations and
unknowns. Using Eqs. 26 and 29, solving for« and«2 , and letting
V'1 yield

«5
3

2
«equiv.raster2

3

8
«equiv.spiral (30)

«252
3

2
«equiv.raster1

9

8
«equiv.spiral (31)

Although the two coefficients can be determined, by using
equivalent nonlinear spring coefficient the Duffing equation c
be used instead of Duffing equation with centripetal accelerat
but only for the corresponding scan pattern.

The propeller scan’s frequency response~Eq. 17! looks similar
to the Duffing equation’s response~Eq. 28! except the nonlinear
geometric effects have the effect of 3/2«11/2V2«2 instead of
3/4«. An equivalent nonlinear spring coefficient can be found
the combination of the two nonlinear geometric effects. The p
peller scan’s equivalent nonlinear spring coefficient is twice t
of the raster scan’s.

3

4
«equiv:raster5

3

4
«1

1

4
V2«2 (32)

3

4
«equiv:propeller5

3

2
«1

1

2
V2«2 (33)

This is expected because the propeller scan without modula
is actually a raster scan with& times the forcing amplitude and
rotated 45 deg. Because the equations are not linearly inde
dent, the propeller scan’s frequency response cannot be use
conjunction with the raster scan’s to determine the individual
efficients« and«2 . Also, just as whirl occurs for the raster sca
whirl may occur for the propeller scan.

5 Experimental Measurements
Experiments were performed to confirm the appropriatenes

the dynamic model for the fiber scanner and to determine
system parameters. The procedure can be summarized as fol
Transactions of the ASME
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• First, the profile of the fiber vibration near resonance w
compared to the corresponding linear modeshape.

• The fiber’s steady-state amplitude and phase responses d
sinusoidal base excitations were measured with least squares
mates. The responses were collected for a raster in thez-direction,
raster scan in they-direction, a spiral~circular! scan, and propeller
~45 deg line! scan. For each scan pattern, the frequency respo
were obtained for various input amplitudes.

• Parametersv, «a, «b, «C, «equiv were chosen to find a goo
match between the analytic and experimental frequency
sponses. The linear parameters,v, «b, and«C can be found in the
frequency responses’ linear regions either by eye or using a
squares technique. From the raster and spiral scans’«equiv param-
eters, which were found by visually fitting the bending over of t
response curves, the coefficients« and«2 were determined alge
braically.

• The scaling factor,s, of the sensor was determined.
• Finally, the piezotube response was checked over the sc

frequency range and at several input amplitudes. A frequency
sponse of the piezotube up to its first bending resonance was
collected to ensure a second-order system~bending tube! approxi-
mation and a proportional model are correct.

5.1 Experimental Setup. Figure 1 shows the experimenta
setup. Light from a diode laser~ThorLabs 635 nm mode
SIFC635! is coupled into a single-mode optical fiber~Spectran
SMC-A0630B, 4mm core diameter!. Near the opposite end, th
fiber is threaded through and glued to a 2mL pipette that is further
attached to a piezotube with quartered electrodes~PZT-5H,
Valpey-Fisher! by a metal collet that acts as the base of the c
tilever. The length of the fiber extending beyond the pipette a
collet is stripped of its plastic protective buffer to reduce dampi
The piezotube is mounted on a 3-axis micrometer positional st
Two D/A outputs from a PCI-6111E data acquisition board~Na-
tional Instruments! installed in a Macintosh G3~Apple Computer!
are controlled by LabView~National Instruments! to generate the
horizontal and vertical waveforms~0V to 610V!. These voltages
are amplified by a 153 high-voltage amplifier (Vmax
56150 V,v23db550 kHz). The high-voltage amplifier output
with 0 deg and 180 deg phase shifts are applied to opposite pl
quadrants of the piezotube.

Light emanating from the vibrating fiber tip impinges on a du
lateral two-dimensional position sensor~UDT Sensors, DL-10
photodiode!. The sensor responses are amplified using a curre
voltage preamplifier, an analog difference circuit, and a sec
amplifier stage. The sensor and piezotube with stages are enc
in a box to reduce the amount of stray environmental light. T
sensor is vertically mounted on a rotational stage to insure tha
sensor axes are aligned with the vibration axes. The same
6111E DAQ card uses four analog A/D converters to collect
z-axis andy-axis signals from the position sensor and the una
plified piezotube drive signals. The resulting waveforms are sa
to a text file, which are then imported into Matlab~Mathworks!,
where signal analyses are performed. Intermediate results
Matlab and Simulink are saved to textfiles, which are then
ported into MathCad~MathSoft! for further analysis.

5.2 Linear Mode Shapes. The fiber was excited into its
second mode of resonance. A digital picture was taken of
deflection profile using a digital camera~Kodak DC290!. Using
MathCad, the second mode shape of the cantilever was comp
using Eq. 4b,

b45rAV2/EI,

E573.8•109 Pa r52.203•103 kg/m3,

V5305•2p rad/sec, l 545.27•1023 m,

D5125•1026 m, A5
1

4
pD2, I 5

1

64
pD4
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The mode shape plot and digital picture were loaded into Ad
Illustrator and the mode shape plot scaled until the amplitu
match. As seen from Fig. 4, the theoretical second mode sh
~black and white dashed line! is in good agreement with the mea
sured mode shape.

5.3 Scan Frequency Responses.To obtain the fiber’s fre-
quency response for the raster, spiral, and propeller scans, a
View program outputs a constant amplitude and constant
quency drive sine wave plus an auxiliary complementary cos
wave, both sampled at 100,000 samples/second~;333 samples/
cycle!. The appropriate drive signal for the scan type is amplifi
and applied to the quadrants of the piezotube. The program w
until the fiber’s vibrations reach steady-state, then samples
sensor’sz and y outputs, and the sine and cosine functions
40,000 samples/second for 0.5 s~;67 cycles!. The four wave-
forms are saved as a file. The program then changes the frequ
keeping the drive amplitude constant and the process repeats
the desired frequency range forming one run. Several runs
made each with different constant drive amplitudes of 2, 4, 6
and 10 volts, before amplification.

The waveform files are imported one at a time into Matla
where a least squares parameter identification Simulink mo
uses the sine and cosine waves as basis functions to give the
estimates of the amplitude and phase of thez andy response. The
frequency, amplitude and phase are stored in an array and
aggregate frequency response of each run saved as a text fil
using least-squares parameter identification of the amplitude
phase, the amplitude and phase measurements become rob
noise and human error.

The experimental frequency response files were imported in
MathCad file where they are plotted along with the theoreti
frequency response, remembering the theoretical frequency
sponse is given in terms of normalizedz frequency. The param-
eters,v, «a, «b, «C, «equiv were chosen until a good visua
match between the experimental and theoretical frequency
sponse was achieved for a given drive amplitude. The drive
plitude was then changed to ensure the frequency responses
matched over the entire drive amplitude range.

To determine the scaling of the sensor, the piezo actuation
removed, and the micrometer was moved a known amount and
change in voltage noted. The sensor scaling factor was 0.3
mm/V.

5.3.1 Raster Scans-z and y Directions.For a raster scan in
thez-axis ~z-raster!, a sine wave signal is amplified and applied
the vertical opposite planar quadrants of the piezotube. Fo
z-raster scan the following parameters provided a good vis
match:

vz5304.481 Hz, «a50.004, «b50.011,

«equiv.raster520.007, «C• f v50.00083

f 250.82, f 450.85, f 650.9, f 850.95, f 1050.99

where f v is a drive amplitude dependant (v) scaling factor that
accounts for any amplitude nonlinearity in the piezotube~devia-
tions from the proportional actuator assumption!.

From the spiral scan~described below!, the equivalent nonlin-
ear spring coefficient was found to be«equiv.spiral50.0012. Using
the equivalent nonlinear spring coefficients for the raster scan
the spiral scan, and their known relationships~Eqs. 30, 31!, we
can solve for the parameters« and«2 .

Fig. 4 Resonating Fiber Profile and Theoretical Mode Shape
MARCH 2004, Vol. 126 Õ 95
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3

4
«equiv.raster520.0075

3

4
«1

1

4
«2 (34)

3

4
«equiv.spiral50.00125«1«2 (35)

«520.011, «25.0123

Fig. 5 shows the predictedz-raster cross-coupled frequency re
sponse~Eqs. 14a,b! from 290 Hz to 320 Hz at 2,4, . . . 10 volts
~before amplification! with experimental results overlaid. Th
same procedure was used for a raster scan in they-axis ~y-raster!.
For a raster scan in they-axis ~y-raster!, a sine wave signal is
amplified and applied to the horizontal opposite planar quadra
of the piezotube.

Figure 6 shows the predictedy-raster cross-coupled frequenc
response from 290 Hz to 320 Hz at 2,4, . . . 10volts ~before am-
plification! with selected experimental results overlaid. Onlyvy
and f were allowed to differ from thez-raster values. A good
match was still possible with the following parameter values:vy
5304.897 Hz andf 250.86, f 450.9, f 650.94, f 850.97, f 10
51.01.

The difference in natural frequencies in thez and y-directions
are easily apparent from the responses. The frequency ratio o
two axes natural frequencies isvy /vz51.001.

5.3.2 Spiral Scan Frequency Response.To obtain the fiber’s
frequency response for a spiral scan a sine wave signal is am
fied and applied to the vertical opposite planar quadrants of
piezotube. Likewise, the cosine wave signal is amplified and
plied to the horizontal opposite planar quadrants. From the
quency response, the equivalent nonlinear spring coefficient
found to be«equiv.spiral51.2•1023. Using the equivalent nonlin-
ear spring coefficients for the raster scan and the spiral scan,
their known relationships~Eqs. 30, 31!, we can solve for the pa-
rameters« and«2 . «521.1•1022, «251.23•1022.

Fig. 5 z-Raster frequency response curves for 2,4,6,8,10
Volts—Theory vs. Experiment
96 Õ Vol. 126, MARCH 2004
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Figure 7 shows the experimental and predicted spiral freque
response of the fiber in second mode of resonance from 290 H
320 Hz at 2,4, . . . 10volts ~before amplification!. The full set of
four implicit equations inAz , Ay , f2 , f3 ~Eqs. 13a–d! with vz
5F cosVt andvy5F sinVt was used to determine the predicte
frequency response.

The same values forvz ,vy «a, «b, «, «2 and«C• f used in the
raster scan were used here. The same small variations in the
ing constantf in thez andy-axis used in the raster scan were us
here.

5.3.3 Propeller Scan Frequency Response.To obtain the fi-
ber’s frequency response for a propeller scan, a sine wave si
is amplified and applied to the vertical opposite planar quadra
of the piezotube. Likewise, a sine wave signal is amplified a
applied to the horizontal opposite planar quadrants. Figure
shows the experimental and predicted frequency response o
fiber in second mode of resonance from 290 Hz to 320 Hz
2,4, . . . 10volts ~before amplification!. The full set of four im-
plicit equations in Az , Ay f2 , f3 ~Eqs. 13a-d! with vz
5F cosVt andvy5F cosVt was used to determine the predicte
frequency response. The same values forvz , vy , «a, «b, «, «2
and«C• f used in the raster scan were used here. The same s
variations in the forcing constantf in the z andy-axis used in the
raster scan were used here.

5.4 Piezotube Response.To determine the piezo respons
within the resonant frequency range of the fiber, the fiber w
cleaved at the tip of the pipette. By doing this, we could determ
the base motion without the fiber dynamics. The tip of the pipe
was placed close to the dual-lateral position sensor and a
quency response was collected from 290 Hz to 320 Hz. Figurea
shows the frequency response of the piezotube from 10 Hz
10,000 Hz and the theoretical frequency response of a linear
ond order system. Figure 9b,c shows the piezotube’s amplitud

Fig. 6 y -Raster frequency response curves for 2,4,6,8,10
Volts—Theory vs. Experiment
Transactions of the ASME
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Fig. 7 Spiral scan frequency response curves for 2,4,6,8,10
Volts—Theory vs. Experiment

Fig. 8 Propeller scan frequency response curves for 2,4,6,8,10
Volts—Theory vs. Experiment
Journal of Dynamic Systems, Measurement, and Control
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and phase frequency response from 290–320 Hz at 2, 4, . . . 10
volts ~before amplification!. Figure 9d shows the amplitude re
sponse of the piezotube at 300 Hz at 2, 4, . . . 10 volts ~before
amplification!. Figure 9e shows the piezo amplitude variation wit
the fiber system’s amplitude variation,f v , normalized with re-
spect to the largest amplitudes.

6 Experimental Results Discussion

6.1 Mode Shapes. As seen from Fig. 4, the theoretical lin
ear second mode shape~black and white dashed line! is in good
agreement with the actual mode shape. Because linear m
shapes can be used to describe the fiber’s deflection curve
while undergoing moderate displacements, the linear mode sh
can be used in conjunction with an inextensibility constraint
determine the fiber’s tip position and angle throughout its vib
tion @16#. The mode shape can be integrated along its path len
until a fixed value—the fiber’s rest length—is accumulated.
that station—the tip position—the displacement and angle can
determined. The fiber tip position and angle throughout its vib
tion is useful in designing the optics to minimize aberrations@16#.

6.2 System Frequency Responses

6.2.1 Parameter Values.For the nonlinear state-spac
dynamics

p̈1«bṗ1«a ṗu ṗu1p52«p~p21q2!2«2p~ ṗ21q̇2!1«C fvvz
(12a)

q̈1«bq̇1«aq̇uq̇u1vy
2q52«q~p21q2!2«2q~ ṗ21q̇2!

1«C fvvy (12b)

Fig. 9 Piezotube Frequency and Amplitude Response. a… Fre-
quency Response 0-10,000 Hz. b…, c… Amplitude and Phase Fre-
quency Response near fiber resonance, d… Amplitude Re-
sponse near fiber resonance, e… scaling factor vs amplitude
MARCH 2004, Vol. 126 Õ 97
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the following parameter values were determined from the exp
ments:

vz52304.481 Hz, vy5304.897 Hz, «a50.004,

«b50.11, «520.011, «25.0123, «C• f v50.00083.

f 250.82, f 450.85, f 650.9, f 850.95, f 1050.99

for the z-axis piezo quadrants

f 250.86, f 450.9, f 650.94, f 850.97, f 1051.01

for the y-axis piezo quadrants
The parameters were chosen to give a good visual fit of

frequency response equations to the experimental frequenc
sponses. A systematic procedure for determining the model
rameters is given below. Because damping and nonlinear dyna
effects ~nonlinear spring and centripetal acceleration effects! are
not significant at frequencies away from resonance, the nat
frequencyvz and forcing constant«C• f v ~with f v51) param-
eters dominate in the frequency ranges 290 Hz–300 Hz and
Hz–320 Hz. Because whirl does not occur at frequencies a
from resonance, the theoretical planar Duffing equation’s
quency response~Eq. 28! can be used with thez-raster’s experi-
mental frequency response at 10-volts~Fig. 5! to determinevz
and«C• f v . The parameter values are varied until the theoret
and experimental responses visually match in the freque
ranges 290 Hz–300 Hz and 310 Hz–320 Hz. In the theoret
planar Duffing equation’s frequency response, the parameters«b,
«a, « are set to arbitrary values, and the nonlinear spring coe
cient « is considered to be the equivalent nonlinear spring coe
cient for the raster scan,«equiv.raster . The values of the piezo
tube’s scaling factorf v,z for the z-axis can then be found by usin
the z-raster’s frequency response curves at the piezotube’s
ages of 2,4, . . . ,8 volts in the frequency ranges 290 Hz–300 H
and 310 Hz–320 Hz and determiningf v,z for each voltage to
provide a good visual fit. This assumes the scaling factor is c
stant over the frequency range of interest. For a linear piezo
response,f v,z51 for all input voltages. At small piezotube volt
ages, and hence small base excitations and small tip disp
ments, internal~viscous! damping dominates aerodamping and t
fiber acts in its linear dynamic range. The viscous damping te
«b, can be found by matching the resonant peak and width in
frequency range 300 Hz–310 Hz of the 2 volt and 4 voltz-raster
theoretical~Eq. 27! and experimental frequency response curv
~Fig. 5!. Although the linear parameters can alternatively be fou
more precisely and simultaneously using frequency response
away from the resonant region and a least squares paramete
timation technique~see section 6.2.2!, extremely precise param
eter values are not absolutely required because the controller
be robust to modest parameter variations. The equivalent no
ear spring coefficient,«equiv.raster , can be found by using the 6, 8
or 10-volt frequency response curves and varying«equiv.raster un-
til there is a good visual match of the bending over of the cur
in regions where whirl does not occur or does not significan
affect the in-plane response. At these higher voltage resp
curves, aerodamping becomes significant and its parameter v
«a, can be found by and making a good visual match at
resonant peak.

The planar Duffing equation~Eqs. 27 and 28! in conjunction
with the experimentaly-axis frequency responses are used to
termine they-axis natural frequency,vy , and the values of the
piezotube’s scaling factorf v,y for the y-axis. Again, in the fre-
quencies away from resonance, 290 Hz–300 Hz and 310 Hz–
Hz, the natural frequencyvy and forcing constant«C• f v param-
eters dominate. We assume the forcing constant«C without the
piezotube’s scaling factorf v has the same value in they-direction
as it does in thez-direction for an isotropic fiber. We determine th
y-axis natural frequency,vy , to account for any slight asymmetr
in the fiber. Due to manufacturing variability, the piezotube’s sc
ing factor may be different in thez-direction and they-direction.
98 Õ Vol. 126, MARCH 2004
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The spiral scan’s experimental frequency responses and
simplified frequency response~Eq. 17!, with Eq. 35
(3/4«equiv.spiral5«1«2V2) can be used to determine th
«equiv.spiral by matching the bending over of frequency respon
curves at higher voltages. The simplified spiral frequency
sponses~Eq. 17! can be used because the experimental res
~Fig. 7! show thatAz>Ay . Because the response is a single im
plicit equation, MathCad’s implicit equation solver~Given, Find!
gives quick, accurate results. From the combination of«equiv.raster
and«equiv.spiral , the nonlinear spring coefficient,«, and the cen-
tripetal acceleration coefficient,«2 , can be found using Eqs. 3
and 31. Hence, all the parameter values for the system dyna
model~Eqs. 12a,b! can be determined in a simple systematic ma
ner, one parameter at a time, using various simplified freque
response equations. Since the parameter values for the experi
tal system have been determined, we can determine how wel
full set of four implicit equations predicts the system response,
just at the points used in the parameter identification, but also
the entire frequency response, for different forcing values, and
different scan types, including whirl and the propeller scan, b
of which were not used for parameter identification. If the fu
model with a single set of parameters is able to predict the sys
response for various scan patterns at various amplitudes, we
place faith in the model that it will be able to predict the respon
for a general excitation as might be seen in a controls applicat

6.2.2 Raster Scan Frequency Response.For thez-raster and
y-raster scans, we are interested in the ability to predict the be
ing over of the frequency response curve at various amplitud
and the range and amplitude of the non-planar response~whirl!.
We use the frequency responses for the cross-coupled Du
equation with centripetal acceleration and aerodamping for a
ter scan~Eqs. 14a,b!. When whirl is present, the solution of th
implicit equation solver is sensitive to initial guesses and may
converge to consistent values leading to imprecise ‘‘noisy’’ so
tions.

Figure 5 shows the predictedz-raster cross-coupled frequenc
response from 290 Hz to 320 Hz at 2,4, . . . 10volts ~before am-
plification! with experimental results taken at whole frequenc
~290,291, . . . 320 Hz! overlaid. The in-plane predicted respon
matches the experimental measurements quite well, but the
of-plane~whirl! predicted results are slightly overestimated. T
experimental whirl shape is different when the frequency is sw
from 290 Hz to 320 Hz than when swept from 320 Hz to 290 H
The whirl frequency range is predicted correctly; however,
whirl shape is accurately predicted when the frequency is sw
upwards, but not when swept downwards. Whirl is not predic
at amplitudes less than 6 V due to damping, however an out
plane response is experimentally measured at 4 V and 2 V. T
out-of-plane response is most likely a slight misalignment in
sensor.

Figure 6 shows the predictedy-raster cross-coupled, frequenc
response from 290 Hz to 320 Hz at 2,4, . . . 10volts ~before am-
plification! with experimental results overlaid. A small variation
the forcing constant«C provides a good fit. The difference in
natural frequencies in thez andy-directions is readily apparent b
the shift in the response curve, which is consistent at all forc
amplitudes. The frequency ratio of the two axes natural frequ
cies isvy /vz51.001.

The out-of-plane results for they-raster frequency respons
match the experimental measurements in width and height.
whirl shape is different when the frequency is swept upwa
from 290 Hz to 320 Hz than when swept downwards from 320
to 290 Hz. The whirl frequency range is predicted correctly; ho
ever, the predicted whirl shape matches for the downward sw
but is opposite for the upward frequency sweep. Again, whir
not predicted at amplitudes less than 6 V due to damping and
out-of-plane response seen at 4 V and 2 V is most likely a sli
misalignment in the sensor.

Although the whirl amplitude is slightly overestimated in thez
Transactions of the ASME
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and y-raster, the general frequency range and shape is pred
well. When using control algorithms with a raster scan, the w
instability is regulated and not allowed to grow@2#, and therefore
the slight disparity is not significant. The general frequency ra
and shape are sufficient.

The planar amplitude frequency response for a raster scan~Eq.
15a! was derived from the general frequency response equat
~Eqs. 13a-d, Fy50, Ay50). The phase response for the plan
Duffing equation with centripetal acceleration~Eq. 15b! was also
found using the same secular equations. Since both the ampl
and phase responses are derived from the same secular equa
experimental confirmation of the amplitude frequency respo
equations implies the ability to accurately predict the phase
sponse. Collection of the phase response, therefore, gives n
ditional information, and experimental phase responses were
collected.

The experimental data was collected at unit frequency inter
~290Hz, 291Hz . . .320Hz!, resulting in sparse data near the res
nant peak~about ten points! and whirl region~about four points!
at each voltage. There are however, five or six voltage va
examined per scan type and the same parameters are used
four scans types. Therefore, there are effectively eighty-e
points~whirl! to 220 data points~resonant peak! to determine how
well the model and data fit in the resonant region. Furtherm
because the frequency response is governed by seven param
and varies piecewise smoothly, dense data does not neces
provide more information on parameter estimation or the go
ness of fit. For instance, the linear mass-spring damper,p̈1bṗ
1v2p5CF cosVt has a frequency response ofb2V21(v2

2V2)25(CF/A)2 which can be rewritten as a linear relationy
5Du:

1/A25@V4 V2 1#•@~CF!22 ~b222v2!~CF!22 v4~CF!22#T

(36)

Given data points (V,A) for a given forceF, this relation can
be solved for the parameters,u, using a linear least-squares tec
nique. Thus only three data points are needed to uniquely d
mine the three model parameters,v, b andC, although additional
data points add noise robustness.

As seen inSection 6.2.1 Parameter Values, a systematic mean
of determining the parameter values for our nonlinear system
developed, only four of which,«b, «a, «equiv.raster and
«equiv.spiral , depend on the resonant region and none on wh
The parameters«b and «a use various voltages from each sc
and can be crosschecked~assuming consistency! between the
z-raster,y-raster, spiral and propeller scans.«equiv.raster is deter-
mined using thez-raster andy-raster scans using at least thr
voltage plots in each, and«equiv.spiralis found using the spiral sca
using at least three voltage plots. The combination of«equiv.raster
and «equiv.spiral give the nonlinear spring coefficient,«, and the
centripetal acceleration coefficient,«2 . Thus, these two coeffi-
cients use almost sixty points~six plots with 10 points per plot! to
determine their values.

Figure 10a shows the predicted linear frequency response
the raster scan, as well as the planar frequency response with
without centripetal acceleration. Clearly, the nonlinear spring
centripetal acceleration terms are needed to accurately predic
bending over of the frequency response curve for the raster c
Centripetal acceleration causes a ‘hardening’ effect, without wh
the nonlinear response~due only to the nonlinear spring! would
bend more to the left.

Although jump is not clearly exhibited in these experimen
other tests have shown a good prediction of the jump phenom
The experiments reported here can accurately predict the ben
over of the frequency response. Since, jump occurs when
bending is sufficient to allow multi-valued solutions at a giv
frequency, we expect the ability to accurately predict any jum
that occur in experiments. It is worth noting that the quality a
method of coupling affects the nonlinear response greatly. Sm
variations can show large changes in the output response inc
Journal of Dynamic Systems, Measurement, and Control
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ing the appearance of whirl and jump even at small amplitud
Ray and Bert, Wrenn and Mayers, and Nayfeh~@17#, pg. 453!
found that a spring support reduces the effect of the nonlinea
This is an additional reason for experimentally determining
parameters rather than predicting their values from physical qu
tities such as stiffness, density, moment of inertia and so on.

6.2.3 Spiral Scan Frequency Response.Figure 7 shows the
experimental and predicted spiral frequency response of the
in second mode of resonance from 290 Hz to 320 Hz at 2,4, . . . 10
volts ~before amplification!. The full set of four implicit equations
in Az , Ay , f2 , f3 ~Eqs. 13a–d! with vz5F cosVt and vy
5F sinVt was used to determine the predicted frequency
sponse because experiments show thatAzÞAy near resonance
~see Fig. 7!. The implicit equation solver requires initial guess
for Az , Ay , f2 , f3 . Below the resonant region, 290 Hz–300 H
we expectf250, f350. Above the resonant region, 310 Hz–32
Hz, we expect,f25p, f35p. Within the resonant region, 300
Hz–310 Hz, we expect thef2 , f3 to vary between 0 andp with
p/2 often being a good initial guess. In this region, we do
expectf3 to always equalf2 due to the different resonant fre
quencies in thez andy-axes. For the amplitude guesses,Az , Ay ,
we can choose values close to the experimental data values.
ous guesses ofAz , Ay , f2 , f3 are made until a good visua
match is found.

For a majority of the frequency response, the responses in
axes,Az and Ay , are identical. In a small region just below th
maximum amplitude, they differ. This is most likely due to
slight difference in the resonant frequencies of the two axes.
model is able to accurately account for the subtle difference
the two axes’ responses due to the different resonant frequen
For the spiral scan, the frequency response curve bends tow
the higher frequencies, opposite the bending of the frequency
sponse curve for the raster scan. Fig. 10b shows the predicted
linear frequency response and nonlinear frequency responses
centripetal acceleration («520.011,«25.0123) and without cen-
tripetal acceleration («520.011,«250) for the spiral scan using
the simplified frequency response~Eq. 16!. Centripetal accelera-
tion plays an important role in the spiral scan response. From
analytic results, without centripetal acceleration we would exp
the response curve to bend over further towards the lower
quencies than the raster scan because the spiral’s effective no
ear coefficient should have increased by 4/3 over the raster s
As mentioned, an effect of centripetal acceleration is to change

Fig. 10 Frequency Response Plots with and without Centrip-
etal Acceleration and Linear Response
MARCH 2004, Vol. 126 Õ 99
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effective nonlinear spring coefficient 3/4«equiv5«1«2V2 in the
cross coupled Duffing equation without centripetal accelerat
The centripetal acceleration adds a ‘hardening’ spring eff
which bends the response curve to the right. For the raster
and propeller scan, the difference with and without centripe
acceleration is not as significant, comparing Fig. 10b to Figs.
10a,c.

From Fig. 10b, it also appears that the frequency response
the spiral scan is almost linear, so it would appear the inclusio
the nonlinear terms are unnecessary. Caution must be taken
cause this plot is only valid ifAz5Ay andf25f3 . Experiments
show thatAzÞAy , ~Fig. 7! and other experiments using oth
fibers show a stronger hardening effect. As stated earlier, the q
ity and method of coupling affects the nonlinear response gre
so it just by coincidence that the response is nearly linear. Furt
more, a linear model cannot predict the amplitude dependent
plitude and phase shifts, which create distortion in the imag
Also, a linear approximation would not capture any of the cro
coupling between the axes.

Figure 11 shows the predicted nonlinear response with
aerodamping. Aerodamping mainly affects the height of the re
nant peak. Away from the resonant peak, it appears to have
effect. Aerodamping does not appear to contribute a majority
the damping, however it is necessary to provide the best fit o
the amplitude range. If aerodamping is replaced by an equiva
viscous damping term, the frequency response may still be
predicted with the added benefit of the omission of a nonlin
term. The effects of this omission may become apparent in
dynamic response of the system submitted to nonsinusoidal f
ing, and therefore must be kept in mind. Operating the fiber in
evacuated chamber and comparing the frequency respons
vacuum to that in air is the best way to verify these results.

6.2.4 Propeller Scan Frequency Response.Figure 8 shows
the experimental and predicted propeller frequency respons
the fiber in second mode of resonance from 290 Hz to 320 H
2,4, . . . 10volts ~before amplification!. The full set of four im-
plicit equations in Az , Ay , f2 , f3 ~Eqs. 13a–d! with vz
5F cosVt andvy5F cosVt was used to determine the predicte
frequency response because the experimental frequency res
clearly showsAzÞAy . See Fig. 8. Hence, the propeller scan
simplified frequency response~Eq. 19! cannot be used. Like the
spiral scan, the implicit equation solver requires initial guesses
Az , Ay , f2 , f3 , with initial guesses made in a similar mann
for different regions around resonance. Away from resonance,
responses in both axes are identical. Near resonance they
greatly. This is most likely due to whirl. As stated earlier, t
propeller scan without amplitude modulation is basically a ras

Fig. 11 Spiral Scan Frequency Response with and without
aerodynamic damping
100 Õ Vol. 126, MARCH 2004
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scan with& times the forcing amplitude and rotated 45 deg. T
raster scan exhibited whirling, so it is not surprising that the p
peller scan does as well. The model is able to accurately acc
for the large differences in the two axes responses due to
different resonant frequencies and cross-coupling, where as a
ear model would be unable to predict this. The good visual ma
between the predicted and experimental data is also impres
because the propeller scan was not used to determine the sy
parameters and is therefore a purely predicted response. As
dicted from Eqs. 32 and 33, the equivalent nonlinear spring co
ficient for the propeller scan is approximately twice that of t
raster scan’s as seen in the regions where the amplitudes
nearly identical and this evaluation is valid.

6.3 Piezotube Response.Figure 9a shows the frequency re
sponse of the piezotube from 10 Hz to 10,000 Hz and the th
retical frequency response of a linear second-order system. Be
6,000 Hz, the piezotube does behave like a bending-tube wi
resonant frequency of about 4,500 Hz. There appears to be a
ening spring nonlinearity of the piezotube at its resonance, but
nonlinearity and the piezotube’s damping do not significantly
fect the frequencies away from its resonance. There also app
to be a slight resonant peak at 8,000 Hz.

Figures 9b,cshows the amplitude and phase frequency respo
of the piezotube from 290 Hz to 320 Hz at 2,4, . . . 10volts ~be-
fore amplification!. Over the frequency range of interest, the fr
quency response is almost flat and the input/output phase is n
constant. The phase at 2 volts is slightly lower than at other v
ages, but this is most likely due to noisy estimation errors of sm
piezo response. The phase shift seen from 290 Hz to 320 H
approximately 6 deg. The phases shift predicted by the sec
order system response is about 0.47 deg.

Figure 9d shows the amplitude response of the piezotube at
Hz at 2,4, . . . 10volts ~before amplification!. The response is
nearly linear, with a slight softening effect. This accounts for t
variation of«C in the fiber’s frequency response, represented bf.
Figure 9e shows the piezo amplitude variation from a linear r
sponse and the scanning system’s amplitude variation,f, normal-
ized with respect to the largest amplitudes. For a perfectly lin
amplitude response,f 51. The visual match is quite good forf z ,
and excellent forf y . Although the piezotube does show a d
namic nonlinear spring response, this is not the cause of the
linear amplitude response near resonance because the ope
frequencies are far away from the piezotube resonance.

Most likely, the phase shift and nonlinear amplitude respons
due to the hysteresis in the piezotube. Hysteresis for a piezo
can be modeled as a backlash nonlinearity at the input of
bending tube@12#. From the phase angle of the describing fun
tion for a backlash nonlinearity, a 6 deg phase lag corresponds
a backlash width to amplitude ratio,b/A, of 0.1 ~a very narrow
hysteresis curve!. A backlash nonlinearity withb/A50.1 is ac-
companied by an approximately 0.95 amplitude scaling factor.
Fig. 12 and~@18#, pg. 179, Figs. 5.17, 5.18!. This is consistent
with our observations forf z and f y . See Fig. 12.

In the range observed, the amplitude effect is not that great
that a best fit line can be used for the amplitude. Note the ph
varies only slightly with piezo drive amplitude. A controlle
should be able to handle the slight nonlinearity in amplitude
sponse and the phase delay. From these results, it appear
linear proportional model of the piezotube is reasonable within
frequency and amplitude range of interest.

7 Conclusion
The goal of this research is to develop a dynamic mode

describe the large amplitude vibrations of a resonating fiber sc
ner. The difficulty in modeling is complicated by the fact that t
effects of damping and nonlinearities are most influential in
resonant region. The partial integro-differential equations desc
ing the continuum mechanics of a base excited cantilever w
simplified leading to a set of ordinary state-space differen
Transactions of the ASME
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equations—the cross-coupled Duffing equations with centrip
acceleration. Damping models are included for the effects of
ternal damping and aerodynamic drag. A proportional model
the piezotube actuator is justified despite the known presenc
nonlinearities such as hysteresis and creep.

Frequency responses were determined for the three type
actuation expected for the fiber scanner—raster scan, spiral s
and propeller scan—using the Poincare-Lindstedt method. The
sponses exhibit an amplitude dependent phase, nonlinear a
tude response and the jump behavior for all three scan patte
Using perturbation analysis, the response was shown to exhi
cross-plane instability—whirl. Thus, the dynamic model is able
describe the main sources of scan distortion. The analytic
quency responses were compared with the experimentally m
sured frequency responses. Using the same parameters, the
space dynamic model was shown to adequately predict
response of the vibrating fiber over the frequency range near r
nance, over the amplitude range of operation, and for the th
scan patterns.

The nonlinear spring behavior for the fiber’s second mode
bration was shown to be softening for the raster scan, but har
ing in the spiral scan. This difference in behavior is due to c
tripetal acceleration. The centripetal acceleration parameter
the nonlinear spring parameter cannot be determined individu
from experimental frequency response curves of a single s
type, but the two parameters can be combined into a sin
equivalent nonlinear spring coefficient for each scan pattern.
ing the equivalent nonlinear spring coefficients for the raster s
and the spiral scan, the two parameters can be determined. It
shown the effects of internal damping are dominant over the a
dynamic drag. Finally, the proportional model of the piezotu
appeared appropriate and justified, thus removing the need
additional equations to handle the piezo dynamics.

The results of experiments show that an adequate model o
fiber scanner, including the actuator, fiber dynamics, and se
can be given by

p̈1bṗ1vz
2p52«p~p21q2!1Cvz (37a)

q̈1bq̇1vy
2q52«q~p21q2!1Cvy (37b)

where the non-normalized natural frequencies are used, aer
namic drag has been incorporated into the viscous damping t
an equivalent nonlinear spring coefficient appropriate for the s
pattern produced is used, and the piezotube amplitude nonline
is ignored.

A slightly more complex model would include aerodynam
drag and centripetal acceleration.

p̈1bṗ1a ṗu ṗu1vz
2p52«p~q21p2!2«2p~ ṗ21q̇2!1Cvz

(38a)

Fig. 12 Amplitude and phase angle of describing function N
for backlash of width 2b and input amplitude A. „†18‡, pg. 179,
figures 5.17, 5.18 ….
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q̈1bq̇1aq̇uq̇u1vy
2q52«q~p21q2!2«2q~ ṗ21q̇2!1Cvy

(38b)

Since we desire a model which only keeps the essential dyn
ics in the operating range of interest, the first set of equations
cross coupled Duffing with viscous damping~Eqs. 37a,b!-is rec-
ommended for the nonlinear controller. In this case, the nonlin
term can be computed using only position measurements. H
ever, inclusion of the centripetal acceleration terms~Eqs. 38a,b!
would most likely result in a better controlled transient respon
because these equations are for general excitation and do no
sume a particular scan pattern. The use of the centripetal acce
tion and/or aerodynamic drag terms would require additional
locity measurements, which are often not available and mus
estimated.

Based on the nonlinear system model derived here~37a,b!, sev-
eral PID, linear, and nonlinear tracking controllers have been
rived and simulated@2#. It was found that PID controllers can
become unstable and linear controllers have steady state er
Nonlinear robust state-space tracking controllers with feedb
linearization were able to force the fiber to asymptotically trac
reference.
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