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1 Introduction [2]. The parameters of resonant scanners may vary from scanner

nner and in th m nner manuf ring variabil-
< Human InterfaceTechnoIogilosca er and in the same scanner due to manufacturing variab

Lab, small high-speed laser scanners with wide fields of vie\}x)I’ enwronmental changes, and aging ef'fec_ts. our goal Is to de-
rive a succinct model of the system dynamics describing the de-

(fov) are being developed for various display and image acquisi- : ; ; o .
tion applications. Among them is a resonating single fiber scann%'rrﬁ]d ?ffeitt::tasl |2ngne raetg[:aor:sof interest and verify it experimentally
which has demonstrated a scan of 20 deg fov at 15.8 kHz. HgTr?is);godel ma [l))e a Ii.cable to devices other than fiber scan-
potential uses include a single fiber scanning endoscope—a fI%x-rs such as NS)(/)M r%%es and various fiber optic sensors. Ac-
ible miniature endoscope that promises high resolution images 5> P . >r Oplic S :
P cording to NayfeH 3], the motions of base excited cantilevers are
a package less than 3 mm in diaméef f interest in connection with helicopter rotor blades, manipulator
The fiber scanner consists of a light-carrying single mode opﬁ- pte ' P
arms and spacecraft antennas. Additional control effort to damp

cal fiber attached to a quadrant piezoelectric tube at a point clooset arametric excitationiwhirl) of these structures has so far
to the fiber’s distal end. The length of the fiber extending beyoncdJ s?sted of adding nonlinear damping terms proportional to the
the piezotube acts as base excited cantilever and is adjusted soégé 9 ping prop

: : : ity cubed 4]. These controllers are somewtlzat hog being
resonant frequency is the desired scan frequency. Opposite pla\ﬁ pet : . ; -
guadrants of the piezotube excite the fiber at the cantilever’s re ded and their effects investigated. With the development of

nant frequency. The low damping and resonant behavior of tfguations describing the vibrations of base excited cantilevers in a

fiber amplifies small tube displacements into large fiber tip di orm compatible with control theory, rigorous design and analysis

placements. Laser light coupled into the fiber emanates from tﬂErObUSt controller can be investigated.
vibrating tip, producing a large field of view spot scan. See Fig. 1. 1.1 Scan Patterns. Various scan patterns can be created by
Once a spot scan is produced, the intensity of the light spot cgfbperly modulating the piezo’s drive signal. A standargraster
be modulated for image display applications. For image acquisican uses the resonating fiber scanner for the fast horizontal scan
tion applications, the intensity of the backscattered ||ght from t%d a ga|vo.mirr0r scanner for the slow vertical scan, as illus-
spot scanned across a target can be collected. In both these apglied in Fig. 2. For a standard VGA display, the fiber resonates
cations, high quality scans are required. However, due to the qyith a constant amplitude sinewave of 15.7 kHz, and the galvo-
namics of the resonating fiber, the scan may not follow an agrirror vibrates at 30 Hz. The disadvantage of using the galvo-
sumed reference pattern resulting in image distortion. mirror scanner is that it is large and heavy. The reflection off the
To understand and predict the fiber scanner’s behavior we Willirror also results in a scanner geometry that is not axially sym-
derive a nonlinear dynamic model. This model will also serve asetric, further increasing the size of the scanner. Removing the
basis for a nonlinear controller to force the scan to follow & depjrror scanner would result in significant weight, size, and power
fined reference regardless of the variability of the scanner’s mgyyings.
chanical and dynamic parameters, thereby removing the distortiony piezotube with quartered electrodes is useful for creating
two-dimensional resonant scan patterns with a single actuator be-
AMEg?érAi\bNugic?é’ TtseoDFyr\rﬁrgEjﬁéiméfugia;;égrfT:)?mh %ﬂga%ggﬂi?" gi;/iSAigﬁMﬁgT cause it provides both horizontal and vertical actuation. Because
JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, ANB CONTROL. Manuscript the move.men.t Of the pIeZOtUbe IS Sma.'”’ the.flber needs to resonate
received by the ASME Dynamic Systems and Control Division August 21, 2004 both directions to produce a two-dimensional scan with a use-
Associate Editor: A. Alleyne able field-of-view. Since resonant amplification occurs only in a
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persal or collection of the image data must be synchronized with
[ the position of the scan. Typically, the data or pixel collection
starts at the beginning of the scan and occurs sequentially at a
constant rate commensurate with the scan frequencies. However,
f the scan cannot always be assumed to follow a known, regular,
repeatable reference pattern, due to the piezotube and the resonant
l l fiber dynamics, resulting in image distortion. Near resonance, the
Tn fiber can undergo large displacements taking it outside the region
of linear dynamic behavior. Observed nonlinear dynamic effects
include amplitude dependant phase shifts, nonlinear amplitude re-
sponse, amplitude jumps, and whirl.

L

a, Positioning & Rotational Stage with Sensar o, Resonating Hher
c. Laser d.Piezcrtube The amplitude dependant phase shifts and nonlinear amplitude
&.High Viltage Amgifier L Compatet for A/D and DA response mainly affect the polar spiral and propeller scans since
they both depend on amplitude modulation for creating a space-
Fig. 1 Resonating Single Fiber Scanner and Experimental filling scan. The amplitude dependent phase shift manifests itself
Setup as warped radial lines in the images created with a spiral scan. In

the propeller scan, the radial scan line will become elliptical be-
cause the andy scans are of different amplitudes and therefore
have different phase shifts. The elliptical radial scan results in

small range around each natural frequency, resonant scans Bilifred or incoherent images. The amplitude dependent phase

gv%(:;ms%? duaﬁosltijarll.allglslsfatjk(])gstv\t)oatstierrr]\;lsr’efsrgItufé(:zy ‘:'gggscgrf] bshh‘t does not regularly affect the raster scan since it consists of a
9 : 9 q Y Sonstant amplitude sinewave. However, if the amplitude of the

expressgd as a small integer or a ra;ional number, a stable CIOP er scan is changed, say to decrease the field-of-view to pro-
pattern is created. Th_e frequency ratio for a 2-D resonant scaniief - oomed scdi], the amplitude dependant phase shift wil

Is the ratio of thez-axis' natural frequency (o thg-axis' natural cause a loss of synchronization with the data input/output result-
frequency. The resonant single fiber scanner uses a standardiﬁlé-in a distorted image

cularly cylindrical optical fiber, so the andy axes’ natural fre- Likewise, the nonlineér amplitude response mainly affects the
guencies are the same and 1:1 Lissajous patterns can be creag '

; . . friplitude modulated polar scans. The inner radii will be nearly
Depending on the amplitude and phase ofdaady scan, the 1:1 o0 shaced while the outer radii will be expanded due to the
Lissajous pattern can take on a variety of shapes: skewed lin

rotated ellinses. and circles Hohlinear amplitude response. This results in a “fish-eye” appear-
- pses, ’ . . ance in the images created with a spiral or propeller scan. Again,
A circular scan results when the horizontal and vertical reson

vibrations are of the same frequency and equal amplitude but raster scan does not suffer as greatly from this effect because
quency and equ P its constant amplitude scan. However, the zooming will not be
deg out of phase. To create a space-filling spiral scan, the ampli- . : - .
. ) X ear with change in drive amplitude.
tudes of a circular scan are modulated in a triangle pattern while

: " . Amplitude jumps are sudden changes in fiber tip amplitudes
the phases are kept constant. Fib. ih addition to a spiral scan, with the same drive frequency and amplitude. At certain frequen-

geepr:()igellzlie r QSC:nl'(ia[]isbszgﬁgereat:?:rnwclztrré;tessmaglzspéizzmsukbeev;/% s, there are two stable vibration amplitudes and small distur-
9. & : ; p 9 ebdances will cause the amplitude to change from one to the other.

line when the horizontal and vertical sinewaves are of the same i, imaging or display applications this sudden and unan-
frequency, equal amplitude and in-phase. To produce a space il

. . ) PR . X X ipated change in field of view can be catastrophic.
ing scan, this 45 deg linear "radial” scan is rotated in a continu="yy"is"an undriven out-of-plane response. For a raster scan
ous “angular” sweep by modulating the horizontal and vertlcaéd . '

sinewaves’ amplitudes such that the sum of their squares rem ntQOUQh the fiber is being only excited horizontally, there may be

constant—one varies sinusoidally, the other varies cosinusoida| vertical response in addition to the horizontal vibration. This
Ys ration causes the scan to take on a skewed linear, rotated el-

1.2 Image Distortion. In both image display and image ac-lipse, or a circular shape instead of the ideally horizontal linear

quisition applications, high quality scans are paramount. The dattern. Depending on the severity of the whirl, the resulting im-
ages are distorted, blurred, or incoherent. The effects of whirl are

not as apparent in the spiral or propeller scan, possibly because
they are being driven in both theandy planes simultaneously.

zreference y-reference Zyscan pattern  \yhid may contribute to the elliptical radial scan line in the pro-
a) raster peller scan, in addition to the amplitude dependant phase shift
WW\RNWWW /\_/ mentioned previously.
= galvs - ¥
z=sin|14t) y=sini) T_h
b) spiral

2=tslrfut] et ot y 2 Dynamic Model
'Qﬁﬂmmﬁz” ¢ W - @ L. To understand the behavior of the scanner, we need a nonlinear
2=( T=11 sindirt] {TE) oo lost]

y=i dynamic model. The model will also serve as a basis for the de-
sign of a nonlinear controller to force the scan to follow a defined

c) propeller - ] r
reference regardless of the dynamics thereby removing the distor-
W . W = tion. Our goal is to derive a succinct model of the system dynam-
ics that describes the desired effects in the region of interest; i.e.,
z=sin{thintut) yecoalthiniet) find the minimum model description that contains the amplitude
¥ dependence of phase and amplitude, the jump phenomena and
pieza-tukbs . whirl.
,m,,,g The main parts of the fiber scanner are the optical fiber, which
= fibser carries the light and whose vibration scans the light; and the pi-
ezotube, which excites the fiber. The dominant system dynamics
Fig. 2 Scan Patterns with z and y components are expected to be from the large amplitude resonant vibrations of
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the fiber. We consider the fiber as a base excited cantilever under-
going transverse vibrations and investigate the dynamics near the
resonant frequency.

2.1 Base Excited Cantilever Continuum Model. Haight

and King[5] used a set of two-dimensional cross-coupled partial
integro-differential equations for a transverse base excited canti-
lever that included longitudinal and nonlinear inertial effects, but
ignored nonlinear curvature for their analysis. Crespo da $@ya
found that the nonlinear curvature can not be ignored and derived
a more complete set of torsional-flexural-flexural partial integro-
differential equations for a transverse base excited cantilever that
retained longitudinal inertia, nonlinear inertia and nonlinear cur-
vature effects. Pai and Nayfdl3] extended Crespo da Silva’s

derivation to include gravitational effects and motion in a fixed —_—
frame reference rather than a base frame reference. The equations Y% On=Feos
given by Pai and Nayfeh are y

’

Fig. 3 Coordinate systems for a base excited cantilever X,y
and z are the inertial coordinates; f is the time; s is the unde-
formed arc length (material coordinate ); &, #, £ are the principle
s (s " axes of the beam’s cross section at position  s; Dg, D,,, D, are
-[(1-p )2/,3 1 w” v"W’dsds the principle stiffnesses; gB,=D, D, and B,=D.ID,; u(s,t),
y y )
0J1 v(s,t), and w(s,t) are the components of the displacement of
the centroid at an arbitrary location s along the inertial axes X,

S S
i}+ci;+ﬁyv””—(1—ﬂy)[w”f v”w”ds—v”’f w’v’ds
1 0

1 Sl (S y and z respectively, and g denotes the acceleration due to
_ ’ DWW = = ’ 12 . .
Bylv' (v v"+w'w")’] Ak (v gravity. F and Q are the constant amplitude and frequency of
ipJo the base motion. All variables are nondimensionalized using

, the constrained length of the beam L and the characteristic
+w’2)ds}ds] +[v"(s— 1)+u’](L3/D,7)mg times LZ\/WD; where m is the mass per unit length. The fol-
lowing assumptions are made: (a) the cross-section dimen-
sions b and h and material properties are uniform,  (b) the dis-
(18)  tributed torsional moments of inertia of the beam are
, negligible, (c) the dissipation of energy due to internal friction,
resistance and relative motion between the beam and its sup-
port system can be modeled by a viscous damper having the

S S
W+ cw+ Byw”” =— (1[3),)[11”[ v"wW"ds— v”’f w'v'ds
coefficient c. [3]

1 0

—[(1—,3y)2/,3y](v”fsfsv”w”dsds) '
0J1

of reference, which leads to excitation of the foa®() sinQt

—[w'(w'w'+v'v")"]’ +F0? cosQt. This is equivalent to the generali+ Q2u excita-
1 S s , tion term of a base excited structure in a fixed frame of reference
— _[W/f [f (v’2+w/2)ds}ds] with base motionu=F cosQt. We replace the sinusoidal base
2 1] Jo motion with general excitation and also include the possibility of
5 excitation in both axesy, andu, . For small displacements, light
+Hw'(s—1)+w'](L*/D,)mg damping and2?~1, we get
+FQ2 cosQt+cFQ sinQt (1b) b+co+ B =—{v'(v'v"+w'w")'}
Note: dots are temporal differentiation, primes are spatial dif- 1 ST (s ,
ferentiation. See Fig. 3. - —[U’J J (v'?+w'?)ds ds] +uy
For a symmetrical homogeneous beam like the fiber, the ratio of 2 1] Jo
the principal stiffnesses are approximately the sarfg=1 (3a)
+&26~1. Thee?s term allows slight asymmetry of the fiber, but
the B,— 1 terms will be of higher order than the derivation’s third ~ W+cw+w"’=—{w’(v'v"+w'w")’}’
order expansion of the nonlinearities and therefore the bending- 1 S s ,
torsional cross coupling disapped8. With 8,=1+¢25 and ig- -z W/f J (v'2+w'2)ds|ds! +u
noring gravitational effects, Eq¢la,b) become 2 1| Jo ‘

l'}'_'_cl']_,’_ByU!/H:_{vl(vIUI!+WIWI!)!}! (Sb)
1 (s, 5 ! 2.2 Discrete Modal Nonlinear Ordinary Differential Equa-
3 v'f f (v'“+w’9)ds|ds; (2d) tions. The partial integro-differential equatiofida,b) can be re-
Jo duced to ordinary differential equations by an application of

Wt oW+ W = —{w' (0" v" +w'w") "}’ Galerkin's method with the assumption of linear mode shapes,
®(x), for cantilevers, and allowing for nonlinear temporal re-
1 s s ! sponse® andq in the z andy axes respectively.
o [ [fwnewmadas]  SPomeow andain hezandy acs esecive
217 Jaldo p(XD=D()q(1),  WX)=D(X)p(t) (42)
+FQ? cosQt+cFQ sinQt (2b) ®(x)=sin Bx—sinhBx+ a(cosBx—coshBx) (4b)

The first term on the right hand side of Eq @r Eq. Db is due wherea and 8 depend on mode numbar
to nonlinear curvature, while the second term on the right handSubstitution of Egs. @b into Eqgs. &,b yields equations for the
side is due to nonlinear inertia. Pai and Nayfeh use a fixed frart@mporal responses.
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p+ecp+p=eky(—p3—poP) —ekp(p>+pp+§2+qd)+eCu, =Eetye=E(e+ae). From an analysis of the linear continuum
(5a) r_nechanics yvith this dampi_ng model, the spatial mode shape sqlu-
B L, s oo tion results in a complex stiffness term and the temporal dynamics

g+ecq+oyq=eki(—g°—p-q) —ekq(p°+pp+g=+qQ) solution contains a linear viscous term. Although this model is
4 eCu (5b) commonly used in NSOM probe linear dynamic analysis and has

Y given good experimental resulf4,7,8], the imperfect elasticity

where klzféq>m[q>r’1(q>r’]q>;;)’]’ds is a constant related to the assumption is actually not appropriate. Experiments performed by

nonlinear curvature contributions, k, Kimball and Lovell[9] indicate that when glass is subjected to

=fé<1>m[<br’1f§f8q)r’,2dsdq’dsis a constant related to the nonlin-Cyclic stress, the internal friction is independent of the rate of
ear inertia contributions, and= [1® ds strain and is dependent on the amplitude over a considerable fre-
] —JO m .

We have introduced a book keeping parametgr group terms guency range.
of similar importance. From experimental experience, we know 2.3.2 Solid Damping. A model of the drag forceF, for

the system is weakly nonlinear, lightly damped and subjected d@uctural damping that incorporates the behavior discussed by

weak excitation. Kimball and Lovell is the solid damping modgl0,11], a type of
It is necessary in modern control theory to describe the dynamysteretic damping.

ics in terms of its state variablep,(,q,q). Solving forp andq
in Egs. 5, Iettingwf,: 1+ ¢4, then expanding the solutions using
Taylor series in terms of and retaining only the terms of ordey
the differential equations reduce to

Fa=— 2 sgrip)lp (72)

with the equivalent viscous damping coefficient
p+ecptp=—eksp(p®+0?) —ekop(p*+§°) +eCu, (6a)

Ceq= Bl T (7b)
g+ e+ wjya=—ekyq(q’+p?) — eko0(p?+ %) + £Cuy The equivalent damping coefficiertt,, is inversely proportional
(6b)  to the vibration frequencyy. In this research, the frequency range
where ks=(k;—ky) (60) of interest is near the fiber’s resonance, which is very narrow for

light damping. The equivalent damping coefficient should be
This is a set of cross-coupled Duffing equations with centripetakarly constant in the region of interest. Therefore, viscous damp-
acceleration. The coefficient on the cubic spring termkzp(p? ing with a constant coefficient can be considered a reasonable
+02),kz=(k;—k,) is a combination of the nonlinear curvature approximation for solid damping in the fiber.
k,, and nonlinear inertiak,. The nonlinear curvature adds a . i . .
hardening spring effect, while the nonlinear inertia adds a soften-2-3-3 Aerodamping. The fiber has a circular cross-section
ing spring effect. This is in agreement with Crespo da Silva ar{’H1d is vibrating in air(for the experiments reported heré=or

Glynn’s [6] observations. The cross-coupled centripetal accelefioderate speedsigh Reynolds's numbgrpressure forces domi-
tion term — ek,p(p?+ ¢2) is due to longitudinal and nonlinear nate over frictional viscous air drag. The aerodynamic drag force

inertia effects. (aerodamping[10,11], F4, can be approximated by

The terms of ordee? contain nonlinearities of order five; i.e. Fy=—asgnp)p?=—al|p|p (8a)
qp*,qp?p?, etc. Crespo da Silva and Glynr{€] partial integro- . . . . -
differential equations were expanded such that perturbation ana\f\flIEh equivalent viscous damping coefficientq, of
sis would only retain nonlinearities up to order three; i.e. 8
q%,qp%.qp? etc. Therefore, the order five nonlinearities are of Ceq=3, @@P, (8b)
higher order than the original derivation accounted for and can ) ) ) )
therefore be ignored. The ordef terms also contain nonlinear WhereP is the amplitude of the sinusoidal resporpsef frequency
damping terms?k,cp(pp+qd),e?k,cq(pp+qg) and nonlinear -
forcing termse?k,Cp(pu,+quy),e’k,Ca(pu,+qu,). Damping
was included in the original equatioasl hocand assumed to be
linear, so we should feel no obligation to retain these nonline
terms. Instead we can add the viscous and aerodynamic damdl'?l
directly to the state space equations. As for the nonlinear forcif
terms, we can consider them higher order terms and ignore th

We see that the equivalent viscous damping increases with fre-
quency and is proportional to the amplitude of the response. Most
gf the effects of the aerodynamic drag occur therefore at the sharp

nant peak with significantly less effect elsewhere. Also, be-

se the spiral and propeller scan patterns are amplitude modu-
ed, the effect of nonlinear aerodynamic drag can become im-
portant. Therefore, an equivalent viscous damping term is

2.3 Damping Models. Nonlinear effects and damping affectinappropriate in this case and we need to add an additional damp-
the dynamic response of the fiber mainly in the frequency regioitgy component into the dynamic equations to explicitly include
of large deflections near resonance. We must therefore carefidigrodynamic damping.
consider how damping limits the deflection of the fiber. In the
original partial integro-differential equatioriggs. H,b), viscous
damping was added somewlaat hoc Viscous damping is a com-
monly used model for damping because it is linear, and for h
monic motion, there is an equivalent viscous damping to oth%

2.4 Piezotube Actuator Dynamics. The amplitude of the
base excitation is not a directly controlled parameter. The voltage
Applied to the piezotube is the input to the system. The movement
the piezotube’s free end provides the base excitation for the
er. Since we control the command voltages, not the base move-
gnt directly, we must be concerned with the piezotube dynamics.
Ideally, a piezotube can be modeled as a linear second-order
stem—a bending tudd2,13. The bending is extremely small
and therefore the end motion can be approximated by a transla-
2.3.1 Imperfect Elasticity. The imperfect elasticity model, a tion. The piezotube is massive and stiff enough that the motion of
type of viscoelastic damping, is the form most commonly used the fiber does not affect the motion of the tube. If we drive the
linear analysis of fiberoptic probes for near-field scanning opticplezotube with a sinusoidal voltage of a frequency well below its
microscopy(NSOM) [7]. NSOM probes use a resonating opticafirst resonant frequency, we expect the piezotube’s end motion to
fiber cantilever and are similar to the fiber scanner except large sinusoidal with an amplitude linearly related to the drive volt-
displacements do not occur. The stress acting on the body is age amplitude and in phase with the drive sinusoid. Preliminary
sumed to be proportional to the strain and the rate of strin. experimental evidence showed that in the frequency range of in-

forms of damping. We will examine the forms of internal dampin
and aerodynamic drag and determine whether a viscous appr
mation is appropriate. We examine two models for internal damg-
ing: imperfect elasticity and solid damping. Y
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terest, the piezotube output is sinusoidal, nearly in-phase with tb&se with actuation in only one-plane. We will extend their results
input, and with a constant input/output amplitude ratio. Thus, we the damped Duffing equation with centripetal acceleration with
consider the base excitation amplitudefo be linearly related to actuation appropriate for raster, spiral and propeller scans.

the input voltageyp . We rewrite the system Equationsatd as

Cu=Kv; (i=zy) 9 . LT . — 0 2 Y NI
Although a piezotube ideally acts as a linear second-order Sys_p+5bp+ea|p|p+p— TeRPTEA TP HSC(Iiéa)

tem, there are two main nonlinearities which affect piezoelectric

materials—creeor drift) and hysteresis. Aging is also a concern _ . -

and that is one of the goals of adding a controller to the systenfi+ebd+ea|q|q+ wiq=—eq(p*+g?) —e,q(p*+ %) +&Cuvy
Since we are vibrating the tube at high frequencies without a DC (120)
component, creep is not a concern. Hysteresis acts as a delay on .

the system, introducing an undesirable phase shift between thigere,e =cks, b=c/k;, a=alks, C=K/ks, e,=gk,. The bar
input and output, and can distort the output. A phase shift adetation will be hereafter dropped.

versely affects the image quality and would reduce the stability ¢f these equationg andq can be considered the fiber tip’s posi-
any controller. Since the preliminary experiments showed the pien in the z andy direction respectively, and the coefficients are
ezotube output is sinusoidal, nearly in-phase with the input, ag, equivalent viscous dampingg, aerodynamic drag:C, forc-
with almost a constant input/output amplitude ratio, the hysteresigy; e, nonlinear spring; and,, centripetal acceleration coeffi-
curve must be very narrow. If a narrow hysteresis curve is apients.

proximated as a straight line, then the input is proportional to the . ) )
output and the hysteresis nonlinearity can be ignored. 3.1 General Sinusoidal Frequency ResponseWe will de-
rive the frequency response of the system for general sinusoidal

2.5 Sensor Dynamics. To complete the loop for feedback excitation in both directions, then make appropriate reductions for
control of the fiber scanner or to make experimental observatiogach scan pattern. Although there is amplitude modulation in the
of the fiber’s tip displacement, a position sensor is used. The ligpiral and propeller scan’s forcing functions and responses, it oc-
emanating from the fiber tip is projected onto the positioours on a slower time scale compared with the faster time scale
sensor—a duolateral position sensing photodiode—and a voltageusoidal vibrations. Therefore, we use the Poincare-Lindstedt
related to its position is produced. The light emanating from th@ethod to determine the steady-state frequency response of the
fiber follows a straight line in the direction of the fiber’s tip angléiber to harmonic inputs with constant amplitudes in both planes,
to the sensor. If the fiber’s tip is extremely close to the positiofiom Egs. 12 and 1.
sensing photodiode, the difference between the tip position andwe use the following assumed solutiops: A, cost+ ), q
the light spot on the photodiode will be small. If the position=A, cos@t+ ¢;+¢) with driving forces ofv,=F, cost), v,
sensor’s voltage is linearly proportional the position of the light F, cos@t+¢;) where ¢, is the phase difference between the
spot on its surface, and its response is fast enough, the positiaviving forcesv, andv,, ¢, is the phase difference between
sensor’s voltage§) andd, are linearly proportional to the fiber’s andp; ¢5 is the phase difference betweepandg; andA, A, are
tip positions,p andq. the response amplitudes. Léy= ¢+ ¢, the phase difference

B=sp G=sq (10) betweerv, andg. Substitution of the assumed solutions and driv-
’ ing forces, Fourier expansion of thesin(Qt)| coefficient, and

2.6 Nonlinear State-Space System DynamicsWith the equating the secular terms to zero leads to a set of four implicit
nonlinear fiber dynamics—the coupled Duffing equation with cel@quations inA; Ay, ¢y, ¢!
tripetal acceleration, aerodamping, equivalent viscous damping of

solid damping, proportional actuation Zrmndy-axes, and propor- 1 5 5 ) 8 as
tional sensors—the equations of motion for the system become— ZAZAV(_ e+ 0%;)SiN(2¢,—2¢,) —ebA N - EsaAzQ
p+ecptealp|p+p=—ekap(p>+0?) —ekop(p?+9?) +eKo, —&CF,sin¢ (13a)
(11&) z 2
G+ ecqtealq|qt wjg=—eksq(p*+q?) —ekq(p®+§?) 1 1
Y (67820 ANA] COS2¢5=26h0) + 5 (8+ 220D AN
+eKuy (11b)
- 1
P=sp, (1) + AX3e+£,00) +(1-0)A,=CF,cosg, (1)
Td=sq (11d)
The equations are normalized with respect to the resonant freq 38
quency in thez direction (p),»,. Note that, the bookkeeping ZAiAy(—s+stz)sin(2¢2— 2¢4) —ebAQ— EeaAf,Qz

coefficiente has been retained.
The parameters, ,w, ,eC,ea,eKz,eK,,6K can be determined =¢CF,sing;, (1)

by comparing the theoretical frequency response with the fre-

guency response obtained experimentally at a given sinusoidal

. . - 1
forcing amplitudep ,= F, cosQt. 3 (- szﬂz)AfAy COS2¢,—2¢)+ 5 (s+ szﬂz)AfAy

3 Frequency Response

To determine the frequency response of the system, we follow
the analysis by Ho, Scott, and Eislgl4] for the large amplitude (13d)
whirling motions of a simply supported beam including the re-
sponse curves and the stability of motion. The dynamic equations3.1.1 Raster Scan With Centripetal Acceleratiohese
they derived for the simply supported beam are cross-coupleduations can be used to find the frequency responses of the cross-
Duffing equations(no centripetal acceleratipnThey used har- coupled Duffing with centripetal acceleration for a raster scan.
monic balance to determine the response curves for the undamgedtingF, =0, Egs. 18-d can be further manipulated to yield

1 2 2_02
+ZAy(3s+szﬂ )+ (wy—Q%)A;=eCF, cos¢;
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2
+

1 3.3 Stability of the Raster Scan’s Out-of-Plane Response.
Z[(ster 38)(A‘Z" Although linear theory predicts that the amplitude of the raster
scan’s undriven out-of-plane component is zexp= 0, using per-
2 turbation analysis we will see that the cross-coupling in the dy-
—A‘yl)—4(92—1)A§+4(92—w§)A§]] =(eFA,)? (14a) namics leads to an instability in the cross-plane axis for base
excitations only in the in-plane direction.

8
ebQ(AZ+AY) + gsaQZ(Aer AY)

2
+

1 5 ) The undamped Duffing equations with centripetal acceleration
Z[2(8+8292)AZ+(38+8292)Ay (Egs. 12,b, a=b=0,6Cv,=F cost+¢)) are

p+p=—ep(p?+a?) —ep(p*+§?) +F cog Ut + )

8 2
ebQ+ ﬂsaﬂ Ay

2 2
+4(w§—02)]] - %(s—azaz)Aﬁ >A§=o (140) (209)
. , 4+a=—eq(p’+0*) —eq(p*+a°) (200)

The equations for the raster scan’s frequency response are a set ) ) } ]
of implicit equations in the amplitudes of the respomsgA, ; Let's examine perturbations to the in-plane response by setting
and the amplitude and frequency of base excitatigng) in the d=0 andgq=0.
unknown parameterb, ¢, ¢, and C. See Eqgs. 12 and 12 for P+ p+epd+e,pp?=F cod Qt+ ) 1)

parameter definitions. Note the trivial, =0 solution.
WhenA, =0, the secular Eqs. #3-13d can be manipulated to  For weak excitation, the solution to Eq. 21 can be approximated

yield the planar amplitude frequency response by p=P cost. To investigate the stability of this solution lgt
8 2 (1 ) =0ot 7, with go=0 and »<1. Substitutingg= # into Eq. 2®
ebQ+ z—eaQ?A,| + Z(Qzez+3s)A§+(1—Qz)] yields
7+ (1+ep’+e,pp?) 7=0 (22)
=(eFIA,) (159) Substituting in the solutiomp=P cos(t into the perturbed
and the planar phase frequency response equation of motion, Eq. 22, expanding the cosine squared term,
8 and rescaling the time=2Qt results in
(st+ EsaAZ(F) 7'+ (a+ B cost)p=0 (239)
tang,=— > (15h) 1
ZA§(38+8202)+(1—92) a= 57 1+§P2(8+8292)} (230)
3.1.2 Spiral Scans. For the spiral scan, the forcing functions 11, )

are 90 deg apartp,=— /2, ¢p,=¢s— w2 (v,=F cosQtu, B= 7qz|3 P (e—e229) (23%)

=Fsin(t). For simplicity, letw,=1. Due to symmetry, lefA
=A,=A, . Also, the phase of thedirection and thg-direction in ~ where primes are derivatives with respect to the scaled time

relation to their plane’s actuation should be the saghgs ¢,. This is a form of Mathieu's equation. It is well known that for
Note thatA,=A,,¢3=¢, may not be the only solution in this given values ofx and 3, there are unbounded solutions, bounded
case. Egs. 18-13d become solutions that are not periodic, and periodic solutions of peried 2
g or 44 [15]. We are interested in periodic solutions of periog, 4
_ _ 2 202 . which corresponds to circular whirl.
ebAQ 3 saA)"=eCFsin¢g, (162) The Mathieu equation has periodic solutions of periadwhen

+8,0%)A3+(1-0%)A=¢CF 160 11
(e+e200%) ( JA=eCF cosé, (160) a=—-=*=8 for small B (24)
which can be combined to 42

8 2 Substituting Egs. 28 23c into Eq. 24, expanding the solution
ebQ+ 3—8aQZA +[(e+&,0%)A%+1- 02— (sCF/A)?2  of Q% in terms ofs ande,, and keeping only the first order terms
™ in e ande,, yields,

=0 a7) , 1 ,
3.1.3 Propeller Scans.For the propeller scan the forcing Q=1+ 4 (e+3e)P
functions are in phase.¢,;=0, ¢4=d¢3 (v,=F cosQtu, or
=F cos(}t)
For simplicity, let wy=1. Due to symmetry, leA=A,=A,. 1
Also, the phase of the z-direction and the y-direction in relation to 0?=1+ Z(3S+82)P2 (25)

their plane’s actuation should be the samg= ¢,. Note that
A=Ay, ¢3= ¢, may not be the only solution in this case. Egs. So, we see near resonane=1, a periodic solution of period
13a—d become 47 is allowed. Since the parametric excitation is twice the fre-
quency of the driving force, a solution to Mathieu’s equation with
—ebAQ — isaAZQZ=sCF siné, (1ga) @ period of 47 would correspond to a perturbed_ out-of-plane re-
37 sponse that is equal to the frequency of the in-plane response.
Therefore, a response will trace out a 1:1 Lissajous pattern, such
A%+ (1-02)A=eCF cosd, (180) as a _circle, ellipse, or skeweq Iine,_in tlze_y_ plane. The cross
coupling of the axes results in an instability when the driving
frequency is near resonance leading to stable motion known as
whirling. For the damped Mathieu’s equation, the results are simi-

3 1
2°72°%2

which can be combined to

8 2 3 1 2 lar except damping prevents the formation of whirl for small driv-
ebQ+ 3—sa92A + §8+ 58202 AZ+1-072 ing amplitudes.
7 Following the above procedure for solutions of period, 2
—(eCF/A)?=0 (19) whena=—1/28%, and ignoring third or higher order terms in
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ande,, leads to the imaginary frequenci@ = — (1/32:°P*) or 8 , 1% (3 , ,\2 s
02=—(e—2/P?)/e, and are therefore impossible. Solutions of | €bQ+ 3, EVA] +| 7 eequA™H1-0 =(eCF/A)
period 27 represent a “figure-eight” response and are not seen in (28)

experiments. ) )
With &¢quip.raster= €equis = & T 1/3Q“e, for the raster scan.

This is applicable only to a raster scan and only when whirl is
] ) ) not present. With whirl present, thg-dynamics have several
4 Dynamics Discussion groupings ofe ande,: (1/4e + 3/4e,02), (1/4e — 1/4e,Q?), and
(3/4e +1/40%¢,). The equivalent nonlinear spring coefficient
fpnnot be used. However, when using control algorithms with a
igster scan, whirl would be remové@] and therefore the re-
onse would again follow that of the planar Duffing equation.
érefore, the Duffing equation with equivalent nonlinear spring
fcgefficient can be used to design and implement controllers for the
raster scan.
heSimilarly, the spiral scan’s frequency respori&g. 17 looks
similar to that of the Duffing equatiofEq. 28 except that the

4.1 Scan Distortion Prediction. One of the main goals of
deriving a system model for the scanner was to understand
dynamic behavior that leads to distortion in the scan—an amp
tude dependent phase shift, nonlinear amplitude response, ju
and whirl. Also, the nonlinear state space mogt&ds. 1h-11d)
must be able to predict these distortion-causing dynamics, i
controller to remove the distortion is to use them.

Examining, the planar amplitude frequency response of t
Duffing equation with centripetal acceleration for a rater g : ) . .
15a), t?]e golutions tah, are n?)nlinear irF, which accounts fﬂle parameter for the nonlinear geometric effects ds+€,Q?) in-
nonlinear amplitude response. The planar phase frequency ?Ee_ad of 3/4. An equivalent nonlinear spring coefficient can be
sponseEq. 1%) shows the phase varies with amplituiedue to ound for the combination of the two nonlinear geometric effects.
aerodynamic drag but also inversely with amplitude squaﬁe, 3 5 4 5
due to the cubic nonlinearity. This accounts for the amplitude Zsequ'ru.raster=8+829 —>Sequ'ru.raster=§(‘9+ﬂ £;) (29)
dependent phase shifts. From Eqalhe amplitude response of
the planar Duffing equation with centripetal acceleration for a The centripetal acceleration appears to have a larger contribu-
raster scan is a sixth order polynomialAg. BecauseéA, must be tion to the combination in the spiral case than in the raster case.
positive, there are up to three possible responses—two stable dhe coefficients ande, are weighted in a 3:1 ratio in the raster
one unstable. In regions away from resonance, of the three sat@se but in a 1.1 ratio in the spiral case.
tions, only one real-valued solution exists; the other two solutionsAgain it would be difficult to determine the individual coeffi-
are imaginary valued. Since the response can be multi-valued, @igntse ande, from the frequency response curves. However, if
Duffing equation with centripetal acceleration is able to descriyée use both the equivalent nonlinear spring coefficients from the
the jump phenomenaection 3.3 Stability of the Raster Scan'gaster scan and the spiral scan, we have two equations and two
Out-of-Plane Responsshowed that the Duffing equation with unknowns. Using Egs. 26 and 29, solving foande,, and letting
centripetal acceleration is able to predict whirl for the raster scaf.~1 yield

Notice, the amplitude frequency response for a spiral and pro- 3 3

peller scans whenwy=1 and A=A,=A, (Eq. 17 and Eq. 19 e=—g. e (30)
respectively, have a similar form to the raster scan’s planar fre- 2 “eaub-raster g Tequu spiral

guency responséeq. 15) except different groupings of the non- 3 9

linear spring.e, and centripetal acceleratios,, coefficients. Be- £y=— Esequ'ru.raster—" g Eequi spira (31)

cause their amplitude dependencies are the same as the raster

scan’s, the spiral and propeller scans are also predicted to eXhibiIAIthough the two coefficients can be determined, by using the
the nonlinear amplitude response, the amplitude dependent phaggivalent nonlinear spring coefficient the Duffing equation can
response, and jump. be used instead of Duffing equation with centripetal acceleration,

4.2 Equivalent Nonlinear Spring Coefficients. Examining Put only for the corresponding scan pattern. o
the planar frequency response of the Duffing equation with cen-1he Propeller scan's }‘requency resporige. 17 looks similar
tripetal acceleratiofEq. 1%), the centripetal acceleration effect! the Duffing equation's responsEq. 28 excepzt the nonlinear
e, is grouped with the nonlinear spring effecand has the same geometric effects have the effect of 8/21/X)%, instead of
amplitude dependence. Because they have nearly the same effét- An equivalent nonlinear spring coefficient can be found for
near resonancé)~ 1, it would be difficult to determine the val- the combination of the two nonlinear geometric effects. The pro-
ues of the individual coefficients and &, from the frequency peller scan’s equivalent nonlinear spring coefficient is twice that
response curves, but the combinatieg,,;, can be found. Like ©f the raster scan's.

equivalent viscous damping, an argument can be made to find an 3 3 1
equivalent effective nonlinear spring coefficient for the group dequb:rasterzzg+zgz£2 (32)
whose effect is the same averaged over the cycle.
3 3 1
3 3 1 1 — Caquin- =—e+-0% 33
Zsequb.rasterzzs+ ZQZSZ_’Sequb.raster:8+ §Qz‘92- 4 “eauv:propeller= 5 2 z 33)

(26) This is expected because the propeller scan without modulation
) ) ) o o is actually a raster scan witl times the forcing amplitude and
The equivalent nonlinear spring coefficient is independent @htated 45 deg. Because the equations are not linearly indepen-
amplitude and proportional to the square of the frequency. Singgnt, the propeller scan’s frequency response cannot be used in
only frequency ranges near resonaite-1 are considered, the conjunction with the raster scan’s to determine the individual co-
coefficient is nearly constant. _ o efficientse ande,. Also, just as whirl occurs for the raster scan,
By using the equivalent nonlinear spring coefficient, the Dufiyniy| may occur for the propeller scan.
ing equation can be used without the inclusion of the centripetal

acceleration. 5 Experimental Measurements

p+ebp+ealp|p+p=— 8equ.ﬂ)p3+ eCFcosQt  (27) Experiments were performed to confirm the appropriateness of
the dynamic model for the fiber scanner and to determine the
with frequency-amplitude response of system parameters. The procedure can be summarized as follows:
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 First, the profile of the fiber vibration near resonance wa
compared to the corresponding linear modeshape.

* The fiber’s steady-state amplitude and phase responses dug
sinusoidal base excitations were measured with least squares esu-
mates. The responses were collected for a raster iz-threction,
raster scan in thg-direction, a spiralcirculan scan, and propeller
(45 deg ling scan. For each scan pattern, the frequency responses
were obtained for various input amplitudes.

* Parameters), sa, eb, £C, £eqy, Were chosen to find a good  The mode shape plot and digital picture were loaded into Adobe
match between the analytic and experimental frequency Ifystrator and the mode shape plot scaled until the amplitudes
sponses. The linear parametessgb, andsC can be found inthe match. As seen from Fig. 4, the theoretical second mode shape

frequency responses’ linear regions either by eye or using a legghck and white dashed lings in good agreement with the mea-
squares technique. From the raster and spiral seags, param- gyred mode shape.

eters, which were found by visually fitting the bending over of the
response curves, the coefficierteind e, were determined alge- 5.3 Scan Frequency ResponsesTo obtain the fiber’s fre-
braically. quency response for the raster, spiral, and propeller scans, a Lab-
« The scaling factors, of the sensor was determined. View program outputs a constant amplitude and constant fre-
« Finally, the piezotube response was checked over the scafigency drive sine wave plus an auxiliary complementary cosine
frequency range and at several input amplitudes. A frequency mwave, both sampled at 100,000 samples/seder833 samples/
sponse of the piezotube up to its first bending resonance was aty6le). The appropriate drive signal for the scan type is amplified
collected to ensure a second-order systbanding tubgapproxi- and applied to the quadrants of the piezotube. The program waits
mation and a proportional model are correct. until the fiber’s vibrations reach steady-state, then samples the
. . . sensor’'sz and y outputs, and the sine and cosine functions at
5.1 E.xperlmental Se.tup. Figure 1 shows the experimentalsg ooo samples/second for 0.5(s67 cycles. The four wave-
setup. L|ght from a diode _IasetThorLabs_ 635_ nm model forms are saved as a file. The program then changes the frequency
SIFC63S is coupled into a single-mode optical fibé8pectran eeping the drive amplitude constant and the process repeats over
SMC-A0630B, 4um core diameter Near the opposite end, thethe desired frequency range forming one run. Several runs are
fiber is threaded through and glued to a2 pipette that is further ade each with different constant drive amplitudes of 2, 4, 6, 8,
attached to a piezotube with quartered electrod@ZT-5H, 544 10 volts, before amplification.
\_/alpey-Fishe) by a metal collet that acts as the base of the can- The waveform files are imported one at a time into Matlab,
tilever. The length of the fiber extending beyond the pipette aRghere a least squares parameter identification Simulink model
colletis stripped of its plastic protective buffer to reduce dampingses the sine and cosine waves as basis functions to give the best
The piezotube is mounted on a 3-axis micrometer positional staggtimates of the amplitude and phase ofzledy response. The
Two D/A outputs from a PCI-6111E data acquisition bof&-  frequency, amplitude and phase are stored in an array and the
tional Instrument)smstal_led in a Macintosh GBApple Computer aggregate frequency response of each run saved as a text file. By
are controlled by LabViewNational Instrumentsto generate the ging Jeast-squares parameter identification of the amplitude and
horizontal and vertical waveforn@V to =10V). These voltages phase, the amplitude and phase measurements become robust to
are amplified by a 18 high-voltage amplifier Ymax noise and human error.
=_i150 V,w_349p=50 kHz). The hlgh-voltage_ amplifier outputs  The experimental frequency response files were imported into a
with 0 deg and 180 deg phase shifts are applied to opposite plaR@ithcad file where they are plotted along with the theoretical
guadrants of the piezotube. frequency response, remembering the theoretical frequency re-
Light emanating from the vibrating fiber tip impinges on adualsponse is given in terms of normalizedrequency. The param-
lateral two-dimensional position sens@DT Sensors, DL-10 eters, w, ea, b, £C, eqq,, Were chosen until a good visual
photodiodg. The sensor responses are amplified using a currentdyich petween the exp%erimental and theoretical frequency re-
voltage preamplifier, an analog difference circuit, and a secoggonse was achieved for a given drive amplitude. The drive am-
amplifier stage. The sensor and piezotube with stages are enclqgmjde was then changed to ensure the frequency responses still
in a box to reduce the amount of stray environmental light. Th&stched over the entire drive amplitude range.
sensor is vertically mounted on a rotational stage to insure that therg getermine the scaling of the sensor, the piezo actuation was
sensor axes are aligned with the vibration axes. The same Pfdmoyved, and the micrometer was moved a known amount and the

6111E DAQ card uses four analog A/D converters to collect thgyange in voltage noted. The sensor scaling factor was 0.3185
z-axis andy-axis signals from the position sensor and the unamym/.

plified piezotube drive signals. The resulting waveforms are saved

to a text file, which are then imported into Matléidathworks, 5.3.1 Raster Scans-z and y Directiongzor a raster scan in
where signal analyses are performed. Intermediate results frine z-axis (zraste¥, a sine wave signal is amplified and applied to
Matlab and Simulink are saved to textfiles, which are then inthe vertical opposite planar quadrants of the piezotube. For a

Fig. 4 Resonating Fiber Profile and Theoretical Mode Shape

ported into MathCadMathSof) for further analysis. zraster scan the following parameters provided a good visual
match:
5.2 Linear Mode Shapes. The fiber was excited into its
second mode of resonance. A digital picture was taken of the ©,=304.481 Hz, £2=0.004, £b=0.011,

deflection profile using a digital cametKodak DC290. Using

MathCad, the second mode shape of the cantilever was computed Eequiv raster= —0.007, &C-f,=0.00083

using Eq. 4, f,=0.82, f,=0.85 f¢=0.9, f3=0.95 f;,=0.99
B*=pAQ?EI, wheref, is a drive amplitude dependant)( scaling factor that
accounts for any amplitude nonlinearity in the piezotutevia-
E=73.810° Pa p=2.20310° kg/n?, tions from the proportional actuator assumpfion
From the spiral scafdescribed beloyy the equivalent nonlin-
0=30527 rad/sec, 1=45.27.10"° m, ear spring coefficient was found to bgy s, spira= 0.0012. Using
the equivalent nonlinear spring coefficients for the raster scan and
D=12510% m A= EWDZ |= in-D“ the spiral scan, and their known relationshiggs. 30, 31, we
' 4 ' 64 can solve for the parametessande,.
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Fig. 5 z-Raster frequency response curves for 2,4,6,8,10 )
Volts—Theory vs. Experiment Fig. 6 y-Raster frequency response curves for 2,4,6,8,10
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3
2 Cequiv.raster™ 0.007= 28 + 282 (34) Figure 7 shows the experimental and predicted spiral frequency
response of the fiber in second mode of resonance from 290 Hz to
3 320 Hz at 2,4, . .. 1&olts (before amplification The full set of
Zeequiv-spiralz0-0012:3+82 (33)  four implicit equations inA,, Ay, &2, ¢3 (Egs. 12—d) with v,
=F cos(lt andv,=F sint was used to determine the predicted
e=—0.011, £,=.0123 frequency response.

_ The same values fav, 0, ea, €b, &, £, andeC- f used in the
raster scan were used here. The same small variations in the forc-
ing constant in the z andy-axis used in the raster scan were used
here.

Fig. 5 shows the predictedraster cross-coupled frequency re
sponse(Egs. 14,b) from 290 Hz to 320 Hz at 2,4 .. 10volts
(before amplification with experimental results overlaid. The
same procedure was used for a raster scan iy-tiegs (y-rastey.
For a raster scan in thg-axis (y-rastey, a sine wave signal is  5.3.3 Propeller Scan Frequency Respons&o obtain the fi-
amplified and applied to the horizontal opposite planar quadramsr's frequency response for a propeller scan, a sine wave signal
of the piezotube. is amplified and applied to the vertical opposite planar quadrants

Figure 6 shows the predictedraster cross-coupled frequencyof the piezotube. Likewise, a sine wave signal is amplified and
response from 290 Hz to 320 Hz at 2,4 . 10volts (before am- applied to the horizontal opposite planar quadrants. Figure 8
plification) with selected experimental results overlaid. Only shows the experimental and predicted frequency response of the
and f were allowed to differ from thez-raster values. A good fiber in second mode of resonance from 290 Hz to 320 Hz at
match was still possible with the following parameter valueg: 2 4, ... 10volts (before amplification The full set of four im-
=304.897 Hz andf,=0.86, f;=0.9, f5=0.94, f3=0.97, f;o plicit equations inA,, A, ¢,, ¢3 (Egs. 1&-d) with v,
=101 =F cosQt andv,=F cos(t was used to determine the predicted

The difference in natural frequencies in thendy-directions frequency response. The same valuesdor wy, ea, eb, &, e,
are easily apparent from the responses. The frequency ratio of #ilsC- f used in the raster scan were used here. The same small
two axes natural frequencies dg,/w,=1.001. variations in the forcing constafiin the z andy-axis used in the

5.3.2 Spiral Scan Frequency Respons&o obtain the fiber’s raster scan were used here.

frequency response for a spiral scan a sine wave signal is ampli5 4  Piezotube Response.To determine the piezo response
fied and applied to the vertical opposite planar quadrants of thgthin the resonant frequency range of the fiber, the fiber was
piezotube. Likewise, the cosine wave signal is amplified and agteaved at the tip of the pipette. By doing this, we could determine
plied to the horizontal opposite planar quadrants. From the frgve base motion without the fiber dynamics. The tip of the pipette
quency response, the equivalent nonlinear spring coefficient wggs placed close to the dual-lateral position sensor and a fre-
found to beeequi. spirai=1.2- 10" 3. Using the equivalent nonlin- quency response was collected from 290 Hz to 320 Hz. Figare 9
ear spring coefficients for the raster scan and the spiral scan, amdws the frequency response of the piezotube from 10 Hz to
their known relationship$Eqgs. 30, 3], we can solve for the pa- 10,000 Hz and the theoretical frequency response of a linear sec-
rameterse ande,. e=—1.1.10"2, £,=1.23 10 2. ond order system. Figureb® shows the piezotube’s amplitude
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Fig. 9 Piezotube Frequency and Amplitude Response. a) Fre-
qguency Response 0-10,000 Hz. b), ¢) Amplitude and Phase Fre-
quency Response near fiber resonance, d) Amplitude Re-
sponse near fiber resonance, e) scaling factor vs amplitude

and phase frequency response from 290-320 Hz at 2,.40
volts (before amplification Figure @ shows the amplitude re-
sponse of the piezotube at 300 Hz at 2, 4. 10 volts (before
amplification. Figure ® shows the piezo amplitude variation with
the fiber system’s amplitude variatiofi,, normalized with re-
spect to the largest amplitudes.

6 Experimental Results Discussion

6.1 Mode Shapes. As seen from Fig. 4, the theoretical lin-
ear second mode shafielack and white dashed linés in good
agreement with the actual mode shape. Because linear mode
shapes can be used to describe the fiber’'s deflection curve even
while undergoing moderate displacements, the linear mode shapes
can be used in conjunction with an inextensibility constraint to
determine the fiber’s tip position and angle throughout its vibra-
tion [16]. The mode shape can be integrated along its path length
until a fixed value—the fiber’s rest length—is accumulated. At
that station—the tip position—the displacement and angle can be
determined. The fiber tip position and angle throughout its vibra-
tion is useful in designing the optics to minimize aberratipty.

6.2 System Frequency Responses

6.2.1 Parameter Values.For the nonlinear state-space
dynamics

p+ebp+eap|p|+p=—ep(p®+9?)—e,p(p*+§?) +eCf,v,
(12a)

4+ebq+eaq|q+wjg=—eq(p®+0?) —£,q(p*+ %)
+eCfu, (12p)
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the following parameter values were determined from the experi-The spiral scan’s experimental frequency responses and the
ments: simplified frequency response(Eq. 17, with Eg. 35
_ _ _ (34 oquiv.spira=€ +£,07%) can be used to determine the
w,=—304.481Hz, «,=304.897Hz, £2=0.004, seqw:pi,mpby matching the bending over of frequency response
eb=0.11, £=-0.011, &,=.0123, £C-f,=0.00083. curves at higher voltages. The simplified spiral frequency re-
sponsesEq. 17 can be used because the experimental results
f,=0.82, f4,=0.85 fg=0.9, f3=0.95 1,,=0.99 (Fig. 7) show thatA,=A, . Because the response is a single im-
plicit equation, MathCad’s implicit equation solv&given, Find

for the z-axis piezo quadrants gives quick, accurate results. From the combinatioaggfii, raster

f,=0.86, f,=0.9, fz=0.94, fg=0.97, f,,=1.01 and egquiy.spiral» the nonlinear spring coefficient, and the cen-
. tripetal acceleration coefficient,,, can be found using Egs. 30
for the y-axis piezo quadrants and 31. Hence, all the parameter values for the system dynamic

The parameters were chosen to give a good visual fit of theydel(Egs. 12,b) can be determined in a simple systematic man-
frequency response equations to the experimental frequency fgr one parameter at a time, using various simplified frequency
sponses. A systematic procedure for determining the model pagponse equations. Since the parameter values for the experimen-
rameters is given below. Because damping and nonlinear dynamjf sy stem have been determined, we can determine how well the
effects (nonlinear spring and centripetal acceleration effeat® | set of four implicit equations predicts the system response, not
not significant at frequencies away from resonance, the natujgl; at the points used in the parameter identification, but also for
frequencyw, and forcing constantC-f, (with f,=1) param- 1, enire frequency response, for different forcing values, and for
eters dominate in the frequency ranges 290 Hz—300 Hz and %ﬁerent scan types, including whirl and the propeller scan, both
Hz-320 Hz. Because whirl does not occur at frequencies awgy \yhich were not used for parameter identification. If the full
from resonance, the theoretical planar Duffing equation's frgs, 4| with a single set of parameters is able to predict the system
quency responség. 28 can be used with theraster's experi- yoqnonse for various scan patterns at various amplitudes, we can
mental frequency response at 10-vdlBSg. 9 to determinew, %ace faith in the model that it will be able to predict the response

andeC-f, . The parameter values are varied until the theoreticgy, 5 genera| excitation as might be seen in a controls application.
and experimental responses visually match in the frequency

ranges 290 Hz—300 Hz and 310 Hz-320 Hz. In the theoretical6.2.2 Raster Scan Frequency Respongeor thezraster and
planar Duffing equation’s frequency response, the paramebers y-raster scans, we are interested in the ability to predict the bend-
ea, € are set to arbitrary values, and the nonlinear spring coeffitg over of the frequency response curve at various amplitudes,
ciente is considered to be the equivalent nonlinear spring coeffind the range and amplitude of the non-planar responkél).
cient for the raster scamequi, raster- 1he values of the piezo- We use the frequency responses for the cross-coupled Duffing
tube’s scaling factof, , for the z-axis can then be found by usingequation with centripetal acceleration and aerodamping for a ras-
the z-raster’s frequency response curves at the piezotube’s vedt- scan(Egs. 14,b). When whirl is present, the solution of the
ages of 2,4...,8volts in the frequency ranges 290 Hz—300 Himplicit equation solver is sensitive to initial guesses and may not
and 310 Hz-320 Hz and determinirfg , for each voltage to converge to consistent values leading to imprecise “noisy” solu-
provide a good visual fit. This assumes the scaling factor is cotiens.
stant over the frequency range of interest. For a linear piezotube=igure 5 shows the predictedraster cross-coupled frequency
responsef, ,=1 for all input voltages. At small piezotube volt- response from 290 Hz to 320 Hz at 2,4. 10volts (before am-
ages, and hence small base excitations and small tip displapéfication) with experimental results taken at whole frequencies
ments, internafviscous damping dominates aerodamping and th€290,291 . . . 320 Hz overlaid. The in-plane predicted response
fiber acts in its linear dynamic range. The viscous damping termatches the experimental measurements quite well, but the out-
eb, can be found by matching the resonant peak and width in tbé&plane (whirl) predicted results are slightly overestimated. The
frequency range 300 Hz—310 Hz of the 2 volt and 4 walaster experimental whirl shape is different when the frequency is swept
theoretical(Eq. 27 and experimental frequency response curvadsom 290 Hz to 320 Hz than when swept from 320 Hz to 290 Hz.
(Fig. 5). Although the linear parameters can alternatively be fourithe whirl frequency range is predicted correctly; however, the
more precisely and simultaneously using frequency response datarl shape is accurately predicted when the frequency is swept
away from the resonant region and a least squares parameterugsvards, but not when swept downwards. Whirl is not predicted
timation techniqugsee section 6.2)2extremely precise param- at amplitudes less than 6 V due to damping, however an out-of-
eter values are not absolutely required because the controller wihne response is experimentally measured at 4 V and 2 V. This
be robust to modest parameter variations. The equivalent nonlout-of-plane response is most likely a slight misalignment in the
ear spring coefficient qqy, raster,» €N be found by using the 6, 8, sensor.
or 10-volt frequency response curves and vardngi, raster Un- Figure 6 shows the predictadraster cross-coupled, frequency
til there is a good visual match of the bending over of the curvessponse from 290 Hz to 320 Hz at 2,4 . 10volts (before am-
in regions where whirl does not occur or does not significantiglification) with experimental results overlaid. A small variation in
affect the in-plane response. At these higher voltage resporibe forcing constantC provides a good fit. The difference in
curves, aerodamping becomes significant and its parameter vahegtural frequencies in tteandy-directions is readily apparent by
ea, can be found by and making a good visual match at thtee shift in the response curve, which is consistent at all forcing
resonant peak. amplitudes. The frequency ratio of the two axes natural frequen-
The planar Duffing equatiofEgs. 27 and 2Bin conjunction cies isw,/w,=1.001.
with the experimentay-axis frequency responses are used to de- The out-of-plane results for thg-raster frequency response
termine they-axis natural frequencyw,, and the values of the match the experimental measurements in width and height. The
piezotube’s scaling factof, , for the y-axis. Again, in the fre- whirl shape is different when the frequency is swept upwards
guencies away from resonance, 290 Hz—300 Hz and 310 Hz—326m 290 Hz to 320 Hz than when swept downwards from 320 Hz
Hz, the natural frequency, and forcing constaréC- f, param- to 290 Hz. The whirl frequency range is predicted correctly; how-
eters dominate. We assume the forcing constd@itwithout the ever, the predicted whirl shape matches for the downward sweep
piezotube’s scaling factdr, has the same value in tlyedirection but is opposite for the upward frequency sweep. Again, whirl is
as it does in the-direction for an isotropic fiber. We determine thenot predicted at amplitudes less than 6 V due to damping and the
y-axis natural frequencyy, , to account for any slight asymmetry out-of-plane response seen at 4 V and 2 V is most likely a slight
in the fiber. Due to manufacturing variability, the piezotube’s scanisalignment in the sensor.
ing factor may be different in the-direction and they-direction. Although the whirl amplitude is slightly overestimated in the
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and y-raster, the general frequency range and shape is predictt )
well. When using control algorithms with a raster scan, the whirl"
instability is regulated and not allowed to gr¢@j, and therefore

the slight disparity is not significant. The general frequency rang
and shape are sufficient.

The planar amplitude frequency response for a raster @agn
15a) was derived from the general frequency response equatior
(Egs. 1&-d, Fy=0, Ay=0). The phase response for the planar
Duffing equation with centripetal acceleratiig. 19) was also
found using the same secular equations. Since both the amplitu
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and phase responses are derived from the same secular equaticc]
experimental confirmation of the amplitude frequency respons
equations implies the ability to accurately predict the phase re
sponse. Collection of the phase response, therefore, gives no &
ditional information, and experimental phase responses were n. . <
collected.

The experimental data was collected at unit frequency interval
(290Hz, 291K . . .320H2, resulting in sparse data near the reso- . .
nant peakiabout ten poingsand whirl region(about four points Y " i
at each voltage. There are however, five or six voltage value 30 g (—— 40
examined per scan type and the same parameters are used for
four scans types. Therefore, there are effectively eighty-eigh
points(whirl) to 220 data point§resonant pegko determine how
well the model and data fit in the resonant region. Furthermore,
because the frequency response is governed by seven paramé&igrsl0 Frequency Response Plots with and without Centrip-
and varies piecewise smoothly, dense data does not necess&ffl/Acceleration and Linear Response
provide more information on parameter estimation or the good- ) ) )
ness of fit. For instance, the linear mass-spring damjperpp Ing the appearance of whirl and jump even at small amplitudes.
+w?p=CFcosQt has a frequency response 6fQZ+(»? Ray and Bert, Wrenn and Mayers, and Nayi¢h7], pg. 453
—0?)2=(CF/A)? which can be rewritten as a linear relatign foqnq that a spring support reduces th(_e effect of the nopl!nearlty.
=Dé: This is an additional reason for experimentally determining the

parameters rather than predicting their values from physical quan-
UA2=[0* 02 1]-[(CF)~? (b?-2w?)(CF)~? »*CF)~?]" tities such as stiffness, density, moment of inertia and so on.
(36) 6.2.3 Spiral Scan Frequency ResponsEigure 7 shows the
Given data points,A) for a given forceF, this relation can experimental and predicted spiral frequency response of the fiber
be solved for the parameterg, using a linear least-squares techin second mode of resonance from 290 Hz to 320 Hz at.2,410
nique. Thus only three data points are needed to uniquely deteoits (before amplification The full set of four implicit equations
mine the three model parameteds,b andC, although additional in A,, Ay, ¢,, ¢3 (Egs. 1&-d) with v,=F cosQt and v,
data points add noise robustness. =F sinQt was used to determine the predicted frequency re-
As seen inSection 6.2.1 Parameter Valyes systematic means sponse because experiments show gt A, near resonance
of determining the parameter values for our nonlinear system w@age Fig. 7. The implicit equation solver requires initial guesses
developed, only four of which,eb, ea, eequiraster @and forA,, A, ¢,, ¢3. Below the resonant region, 290 Hz—-300 Hz,
Eequiv.spiral» de€pend on the resonant region and none on whiske expectp,=0, ¢3=0. Above the resonant region, 310 Hz—-320
The parametersb and e« use various voltages from each scamiz, we expectp,=m, ¢3=m. Within the resonant region, 300
and can be crosscheckddssuming consistengybetween the Hz—310 Hz, we expect thé,, ¢5 to vary between 0 and with
zraster,y-raster, spiral and propeller scang.qui, raster IS deter- @/2 often being a good initial guess. In this region, we don’t
mined using thez-raster andy-raster scans using at least threexpectos to always equakp, due to the different resonant fre-
voltage plots in each, anglqyy.spiraiiS found using the spiral scan quencies in the andy-axes. For the amplitude guessés, A,
using at least three voltage plots. The combinatiosQf,;, raster W€ can choose values close to the experimental data values. Vari-
and eequip.spiral give the nonlinear spring coefficiert, and the ous guesses oh,, A,, ¢,, ¢; are made until a good visual
centripetal acceleration coefficient,. Thus, these two coeffi- match is found.
cients use almost sixty poingsix plots with 10 points per plpto For a majority of the frequency response, the responses in both
determine their values. axes,A, andA,, are identical. In a small region just below the
Figure 1@& shows the predicted linear frequency response fonaximum amplitude, they differ. This is most likely due to a
the raster scan, as well as the planar frequency response with alight difference in the resonant frequencies of the two axes. The
without centripetal acceleration. Clearly, the nonlinear spring amdodel is able to accurately account for the subtle differences in
centripetal acceleration terms are needed to accurately predict the two axes’ responses due to the different resonant frequencies.
bending over of the frequency response curve for the raster caSer the spiral scan, the frequency response curve bends towards
Centripetal acceleration causes a ‘hardening’ effect, without whithe higher frequencies, opposite the bending of the frequency re-
the nonlinear respondelue only to the nonlinear springvould sponse curve for the raster scan. Figh hows the predicted
bend more to the left. linear frequency response and nonlinear frequency responses with
Although jump is not clearly exhibited in these experimentsientripetal acceleratiore —0.011¢,=.0123) and without cen-
other tests have shown a good prediction of the jump phenometigetal accelerationg=—0.011¢,=0) for the spiral scan using
The experiments reported here can accurately predict the bendihg simplified frequency respon$gq. 16. Centripetal accelera-
over of the frequency response. Since, jump occurs when ttien plays an important role in the spiral scan response. From the
bending is sufficient to allow multi-valued solutions at a givemnalytic results, without centripetal acceleration we would expect
frequency, we expect the ability to accurately predict any jumpke response curve to bend over further towards the lower fre-
that occur in experiments. It is worth noting that the quality anduencies than the raster scan because the spiral’s effective nonlin-
method of coupling affects the nonlinear response greatly. Smafr coefficient should have increased by 4/3 over the raster scan.
variations can show large changes in the output response incléd-mentioned, an effect of centripetal acceleration is to change the
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4 1o scan withv2 times the forcing amplitude and rotated 45 deg. The
i raster scan exhibited whirling, so it is not surprising that the pro-

E sk 1‘1 J peller scan does as well. The model is able to accurately account
’E for the large differences in the two axes responses due to the

2t . different resonant frequencies and cross-coupling, where as a lin-
E ear model would be unable to predict this. The good visual match

1+ - between the predicted and experimental data is also impressive
because the propeller scan was not used to determine the system
parameters and is therefore a purely predicted response. As pre-

= Hequeny " e dicted from Eqgs. 32 and 33, the equivalent nonlinear spring coef-
- == ztheoretical with aerodamping ficient for the propeller scan is approximately twice that of the
- -~ ytheoretical with asrodamping raster scan’s as seen in the regions where the amplitudes are
—  ztheoretical without asredamping nearly identical and this evaluation is valid.
—— ztheoretical without aerodamping 6.3 Piezotube Response.Figure % shows the frequency re-
U oo Zexperiment sponse of the piezotube from 10 Hz to 10,000 Hz and the theo-
© o o Y Expariment retical frequency response of a linear second-order system. Below
6,000 Hz, the piezotube does behave like a bending-tube with a
Fig. 11 Spiral Scan Frequency Response with and without resonant frequency of about 4,500 Hz. There appears to be a soft-
aerodynamic damping ening spring nonlinearity of the piezotube at its resonance, but this

nonlinearity and the piezotube’s damping do not significantly af-
fect the frequencies away from its resonance. There also appears
) ) ) . 5. to be a slight resonant peak at 8,000 Hz.
effective nonlinear spring coefficient 3/d, , =z +£,{ in the Figures ®,cshows the amplitude and phase frequency response
cross coupled Duffing equation without centripetal acceleratiogs he piezotube from 290 Hz to 320 Hz at 2,4. 10volts (be-
The centripetal acceleration adds a ‘hardening’ spring effegh e ampiification. Over the frequency range of interest, the fre-
which bends the response curve to the right. For the raster sgazncy response is almost flat and the input/output phase is nearly
and propeller scan, the difference with and without centripetghnstant. The phase at 2 volts is slightly lower than at other volt-
acceleration is not as significant, comparing Figb ¥0 Figs. ages, but this is most likely due to noisy estimation errors of small
10a,c _ _ piezo response. The phase shift seen from 290 Hz to 320 Hz is
From Fig. 1®, it also appears that the frequency response fafyyroximately 6 deg. The phases shift predicted by the second
the spiral scan is almost linear, so it would appear the inclusion gfqer system response is about 0.47 deg.
the nonlinear terms are unnecessary. Caution must be taken bEFigure al shows the amplitude response of the piezotube at 300
cause this plot is only valid iR, =A, and ¢,= ¢5. Experiments ; 4t 2.4 10volts (before amplification The response is
show thatA,#A,, (Fig. 7) and other experiments using othehearly linear, with a slight softening effect. This accounts for the
fibers show a stronger hardening effect. As stated earlier, the qUglriation ofsC in the fiber’s frequency response, representefl by
ity and method of coupling affects the nonlinear response great}_){gure @ shows the piezo amplitude variation from a linear re-
so it just py coincidence that the response is nearly linear. Furthgb-onse and the scanning system’s amplitude variatiorgrmal-
more, a linear model cannot predict the amplitude dependent agkq with respect to the largest amplitudes. For a perfectly linear
plitude and phase shifts, which create distortion in the imagegnplitude responsd,= 1. The visual match is quite good fdy,
Also, a linear approximation would not capture any of the crosgyg excellent forf, . Although the piezotube does show a dy-
coupling between the axes. _ _namic nonlinear spring response, this is not the cause of the non-
Figure 11 shows the predicted nonlinear response withoitaar amplitude response near resonance because the operating
aerodamping. Aerodamping mainly affects_the height of the réSPaquencies are far away from the piezotube resonance.
nant peak. Away from the resonant peak, it appears to have littleyogt likely, the phase shift and nonlinear amplitude response is
effect. Aerodamping does not appear to contribute a majority gf,e 1o the hysteresis in the piezotube. Hysteresis for a piezotube
the damping, however it is necessary to provide the best fit ov&f, phe modeled as a backlash nonlinearity at the input of the
the amplitude range. If aerodamping is replaced by an equivalgjdnging tubg12]. From the phase angle of the describing func-
viscous dampmg term, the freql_Jency response may still be_ W&Hh for a backlash nonlinearity 6 deg phase lag corresponds to
predicted with the added benefit of the omission of a nonlinegrpacklash width to amplitude ratib/A, of 0.1 (a very narrow
term. The effects of this omission may become apparent in thesteresis curve A backlash nonlinearity witth/A=0.1 is ac-
dynamic response of the system submitted to nonsinusoidal foggmpanied by an approximately 0.95 amplitude scaling factor. See
ing, and therefore must be kept in mind. Operating the fiber in #fg. 12 and([18], pg. 179, Figs. 5.17, 5.18This is consistent
evacuated chamber and comparing the frequency responseyith our observations fof , andf, . See Fig. 12.
vacuum to that in air is the best way to verify these results. In the range observed, the amplitude effect is not that great, so
6.2.4 Propeller Scan Frequency ResponsEigure 8 shows that a best fit line can be used for the amplitude. Note the phase
the experimental and predicted propeller frequency responseV@fies only slightly with piezo drive amplitude. A controller
the fiber in second mode of resonance from 290 Hz to 320 Hz #jould be able to handie the slight nonlinearity in amplitude re-
2,4, ... 10volts (before amplification The full set of four im- SPonse and the phase delay. From these results, it appears the
plicit equations iNA,, A,, ¢,, ¢; (Egs. 12-d) with v, linear proportional model of the piezotube is reasonable within the
=F cosQt andv, =F cosQt was used to determine the predictedreduency and amplitude range of interest.
frequency response because the experimental frequency respanse lusi
clearly showsA,#A, . See Fig. 8. Hence, the propeller scan’ Conclusion
simplified frequency respong&g. 19 cannot be used. Like the The goal of this research is to develop a dynamic model to
spiral scan, the implicit equation solver requires initial guesses fdescribe the large amplitude vibrations of a resonating fiber scan-
A, Ay, ¢5, @3, With initial guesses made in a similar mannener. The difficulty in modeling is complicated by the fact that the
for different regions around resonance. Away from resonance, tbffects of damping and nonlinearities are most influential in the
responses in both axes are identical. Near resonance they vasonant region. The partial integro-differential equations describ-
greatly. This is most likely due to whirl. As stated earlier, théng the continuum mechanics of a base excited cantilever were
propeller scan without amplitude modulation is basically a rasteimplified leading to a set of ordinary state-space differential
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IN 4+bg+aq|a+w;q=—=sq(p?+0?) —&,q(p?+4?) + Cv,

4 (380)

(_6? Since we desire a model which only keeps the essential dynam-
w20 ics in the operating range of interest, the first set of equations-the
o cross coupled Duffing with viscous dampifiggs. 33,b)-is rec-
o-40 ommended for the nonlinear controller. In this case, the nonlinear
©

term can be computed using only position measurements. How-
ever, inclusion of the centripetal acceleration ter(igs. 3&,b)
would most likely result in a better controlled transient response

P T o’b -90 P S S > because these equations are for general excitation and do not as-
01102 04 06 0810 = ~ 00102 04 06 08 1~OFW sume a particular scan pattern. The use of the centripetal accelera-
tion and/or aerodynamic drag terms would require additional ve-

Fig. 12 Amplitude and phase angle of describing function N locity measurements, which are often not available and must be
for backlash of width 2b and input amplitude A. ([18], pg. 179, estimated.
figures 5.17, 5.18 ). Based on the nonlinear system model derived (&re,b), sev-

eral PID, linear, and nonlinear tracking controllers have been de-
rived and simulated?2]. It was found that PID controllers can
equations—the cross-coupled Duffing equations with centripetaécome unstable and linear controllers have steady state errors.
acceleration. Damping models are included for the effects of ihonlinear robust state-space tracking controllers with feedback
ternal damping and aerodynamic drag. A proportional model ftinearization were able to force the fiber to asymptotically track a
the piezotube actuator is justified despite the known presencereference.
nonlinearities such as hysteresis and creep.
Frequency responses were determined for the three types of
actuation expected for the fiber scanner—raster scan, spiral sgaoknowledgment
and propeller scan—using the Poincare-Lindstedt method. The re-_, . . .
sponF;esp exhibit an ampl%ude dependent phase, nonlinear ampli--rhIS work has been sponsored by the Whitaker Foundation.
tude response and the jump behavior for all three scan patterns.
Using perturbation analysis, the response was shown to eXhibilt-'{%ferences
cross-plane instability—whirl. Thus, the dynamic model is able to
describe the maln sources of scan distoton, The analyl fret Sebe, £, 3, Smiuich 0.1 1, o, €., ad Fenval 7. o, 20
guency responses were compa_lred with the experimentally mea- Iutio?y and Wide Field of \ﬁew.‘giémonitoring ang Endoscopy Tec'hnglogies,
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